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Preface

High-dimensional data are nowadays rule rather than exception in areas like in-
formation technology, bioinformatics or astronomy, to name just a few. The word
“high-dimensional” refers to the situation where the number of unknown param-
eters which are to be estimated is one or several orders of magnitude larger than
the number of samples in the data. Classical statistical inference cannot be used for
high-dimensional problems. For example, least-squares fitting of a linear model hav-
ing many more unknown parameters than observations and assigning corresponding
standard errors and measures of significance is ill-posed. It is rather obvious that
without additional assumptions, or say restricting to a certain class of models, high-
dimensional statistical inference is impossible. A well-established framework for fit-
ting many parameters is based on assuming structural smoothness, enabling estima-
tion of smooth functions. The last years have witnessed a revolution of methodolog-
ical, computational and mathematical advances which allow for high-dimensional
statistical inference based on assuming certain notions of sparsity. Shifting the fo-
cus from smoothness to sparsity constraints, or combining the two, opens the path
for many more applications involving complex data. For example, the sparsity as-
sumption that the health status of a person is depending only on a few among sev-
eral thousands of biomarkers appears much more realistic than considering a model
where all the thousands of variables would contribute in a smooth way to the state
of health.

This book brings together methodological concepts, computational algorithms, a
few applications and mathematical theory for high-dimensional statistics. The math-
ematical underpinning of methodology and computing has implications on explor-
ing exciting possibilities and understanding fundamental limitations. In this sense,
the combination of methodology and theory builds the foundation of the book. We
present the methods and their potential for data analysis with a view on the un-
derlying mathematical assumptions and properties and vice-versa, the theoretical
derivations are motivated by applicability and implications to real data problems.
The mathematical results yield additional insights and allow to categorize different
methods and algorithms in terms of what they can achieve and what not. The book
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viii Preface

is not meant as an overview of the state-of-the-art, but rather as a selective treatment
with emphasis on our own work.

Itis possible to read the book with more emphasis on methods and applications or on
theory; but of course, one can also focus on all aspects with equal intensity. As such,
we hope that the book will be useful and appealing to statisticians, data analysts
and other researchers who appreciate the possibilities to learn about methods and
algorithms, mathematical theory and the combination of both of them.

This book emerged from a very nice collaboration between the authors. We ac-
knowledge many people who have contributed in various ways to its completion.
Wolfgang Hirdle proposed to write a book on high-dimensional statistics while hik-
ing in the black forest at Oberwolfach, and we are thankful for it. Alain Hauser,
Mohamed Hebiri, Markus Kalisch, Johannes Lederer, Lukas Meier, Nicolai Mein-
shausen, Patric Miiller, Jiirg Schelldorfer and Nicolas Stadler have contributed with
many original ideas and concepts as collaborators of joint research projects or mak-
ing some thoughtful suggestions for the book. Finally, we would like to express
our gratitude to our families for providing a different, interesting, supportive and
beautiful environment.

Ziirich, December 2010 Peter Biihlmann and Sara van de Geer



Contents

1 Introduction.................. ... ... .. . i 1
1.1 Theframework ......... . ... .. i 1
1.2 The possibilities and challenges. . ........... ... ... o ... 2
1.3 Aboutthe book ....... ... i 3

1.3.1 Organization of thebook . ............................. 3
1.4 Someexamples . ........coouuiiiiiii 4
1.4.1 Prediction and biomarker discovery in genomics .......... 5

2 Lassoforlinearmodels ........ ... ... ... ... ...l 7
2.1 Organization of the chapter .............. .. ... .. oot 7
2.2 Introduction and preliminaries ... ..............oiieiuaannn.. 8

2.2.1 TheLassoestimator ...........coouuuiiieinnnneeennn. 9
2.3 Orthonormal design. ...............iiiiiiiiniiiiinnaan. 10
24 Prediction .. ...t 11
2.4.1 Practical aspects about the Lasso for prediction ........... 12
242 Some results from asymptotic theory .................... 13
2.5 Variable screening and || — B°||,-norms .. ... 14
2.5.1 Tuning parameter selection for variable screening . ........ 17
2.5.2  Motif regression for DNA binding sites .. ................ 18
2.6 Variable selection ........... ... ... i 19
2.6.1 Neighborhood stability and irrepresentable condition . . . ... 22
2.7 Key properties and corresponding assumptions: a summary ....... 23
2.8 The adaptive Lasso: a two-stage procedure ..................... 25
2.8.1 Anillustration: simulated data and motif regression ....... 25
2.8.2 Orthonormal design ............ . ... oiiiiiinnaaio.. 27
2.8.3 The adaptive Lasso: variable selection under weak conditions 28
2.8.4 Computation .. ......ouuetinetee i 29
2.8.5 Multi-step adaptive Lasso ..., 30
2.8.6 Non-convex penalty functions. ......................... 32
2.9 Thresholdingthe Lasso........... ... ... oo it 33
2.10 Therelaxed Lasso .. ........uiiiimun e 34

ix



Contents

2.11 Degrees of freedom of the Lasso .............................. 34
2.12 Path-following algorithms ............... ... ... ... ... .. 36
2.12.1 Coordinatewise optimization and shooting algorithms. . .. .. 38
2.13 Elastic net: an exXtension . . .........uuetieetinetineenneennn. 41
Problems . ... ... 42
Generalized linear models and the Lasso.......................... 45
3.1 Organization of the chapter ............. ... ... oo, 45
3.2 Introduction and preliminaries . .............. ... ... . ... 45
3.2.1 The Lasso estimator: penalizing the negative log-likelihood . 46
3.3 Important examples of generalized linear models ................ 47
3.3.1 Binary response variable and logistic regression .......... 47
3.3.2  POiSSON T€ZIESSION . . vt v e e te e e et ee e ie e ieeena 49

3.3.3 Multi-category response variable and multinomial
distribution ....... ... 50
Problems . ... 53
Thegroup Lasso ........... ... .. ... .. . i 55
4.1 Organization of the chapter .......... ... . ... ... o iiia... 55
4.2 Introduction and preliminaries . . ...............oueeeeunaa... 56
4.2.1 The group Lassopenalty ............. ..., 56
4.3 Factor variables as covariates . . .. ...ttt 58
4.3.1 Prediction of splice sites in DNA sequences .............. 59
4.4 Properties of the group Lasso for generalized linear models ....... 61
4.5 The generalized group Lassopenalty .......................... 64
4.5.1 Groupwise prediction penalty and parametrization invariance 65
4.6 The adaptive group Lasso. ... 66
4.7  Algorithms for the group Lasso ........... ... ... oo, 67
4.7.1 Block coordinate descent..................... ..., 68
4.7.2 Block coordinate gradient descent ...................... 72
Problems . . ... ... 75
Additive models and many smooth univariate functions ............ 77
5.1 Organization of the chapter ............... .. ... ... ......... 77
5.2 Introduction and preliminaries . ................oouueiiiia... 78
5.2.1 Penalized maximum likelihood for additive models. ....... 78
5.3 The sparsity-smoothness penalty . ........... ... ..., 79
5.3.1 Orthogonal basis and diagonal smoothing matrices . ....... 80
5.3.2  Natural cubic splines and Sobolev spaces ................ 81
5.3.3  Computation ... ........uieiiiii 82
5.4 A sparsity-smoothness penalty of group Lassotype .............. 85
5.4.1 Computational algorithm.............................. 86
5.4.2 Alternative approaches. . ............cooviiiiiiinen. . 88
5.5 Numerical examples . ...........c... o i 89

5.5.1 Simulated example .. ... 89



Contents xi

5.5.2 Motif regression . ........... i 90

5.6 Prediction and variable selection .................. ... ... .. 91
5.7 Generalized additive models ........... ... ... ... .. . 92
5.8 Linear model with varying coefficients . ........................ 93
5.8.1 Properties for prediction ............ ... ... ... 95

5.8.2  Multivariate linear model. ........... ... ... ... ... ... 95

5.9 Multitask learning . ...t 95
Problems . ... ... 97
6 TheoryfortheLasso ........... .. ... . ... ... ... ... ..., 99
6.1 Organization of thischapter . ............... ... ... . ..., 99
6.2 Leastsquaresandthe Lasso............. .. ... i it 101
6.2.1 Introduction...............oiiiiiiiiiiiiiiii 101

6.2.2 The result assuming the truthislinear ................... 102

6.2.3 Linear approximationof thetruth....................... 108

6.2.4 A further refinement: handling smallish coefficients ....... 112

6.3 The setup for general convex loss ................. ... 114
6.4 The margin condition ........... ... iiiiiiiniiinnaann 119
6.5 Generalized linear model without penalty ...................... 122
6.6 Consistency of the Lasso for general loss . ...................... 126
6.7 Anoracleinequality ........... .. ... i 128
6.8 Thelgerrorfor 1 <g<2 ...... ... .. ... .. il 135

6.8.1 Application to least squares assuming the truth is linear . ... 136
6.8.2 Application to general loss and a sparse approximation of

thetruth ... ... 137

6.9 The weighted Lasso ......... ... ... ... i it 139
6.10 The adaptively weighted Lasso ............ .. ... ..ot 141
6.11 Concave penalties ... .........uuiuuunnnitiiinn e 144
6.11.1 Sparsity oracle inequalities for least squares with ¢,-penalty 146
6.11.2 Proofs for this section (Section 6.11) .................... 147

6.12 Compatibility and (random) matrices .......................... 150
6.13 On the compatibility condition ............................... 156
6.13.1 Direct bounds for the compatibility constant.............. 158
6.13.2 Bounds using ||Bs||T <s||Bsl3 - eviiiiii 161
6.13.3 Sets A containing S ........... i 167
6.13.4 Restricted iSometry. ...t 169
6.13.5 Sparse eigenvalues ...ttt 170
6.13.6 Further coherence notions ............................. 172
6.13.7 An overview of the various eigenvalue flavored constants . .. 174
Problems .. ... .o 178
7  Variable selection with the Lasso................................. 183
7.1 Introduction . .........ooouu it 183
7.2 Some results from literature .. ........ ... .. ... i i 184

7.3 Organization of thischapter . ..................... .. ...... ... 185



xii

Contents

7.4 Thebeta-min condition. ............. oottt 187
7.5 The irrepresentable condition in the noiselesscase ............... 189
7.5.1 Definition of the irrepresentable condition ............... 190
7.52 The KKT conditions. ............ooviiiiiineiinnnn... 190
7.5.3 Necessity and sufficiency for variable selection ........... 191
7.5.4 The irrepresentable condition implies the compatibility
condition .. ...t 195
7.5.5 The irrepresentable condition and restricted regression . . . . . 197
7.5.6 Selecting a superset of the true active set................. 199
7.5.7 The weighted irrepresentable condition . ................. 200
7.5.8 The weighted irrepresentable condition and restricted
TEETESSION . vttt ettt ettt e e e e e e 201
7.5.9 The weighted Lasso with “ideal” weights ................ 203
7.6 Definition of the adaptive and thresholded Lasso ................ 204
7.6.1 Definition of adaptive Lasso ........................... 204
7.6.2  Definition of the thresholded Lasso ..................... 205
7.6.3 Ordersymbols......... ... i 206
7.7 A recollection of the results obtained in Chapter 6 ............... 206
7.8 The adaptive Lasso and thresholding: invoking sparse eigenvalues . . 210
7.8.1 The conditions on the tuning parameters ................. 210
7.82 Theresults...... ..o 211
7.8.3 Comparison withthe Lasso............................ 213
7.8.4 Comparison between adaptive and thresholded Lasso ... ... 214
7.8.5 Bounds for the number of false negatives ................ 215
7.8.6  Imposing beta-min conditions. ......................... 216
7.9 The adaptive Lasso without invoking sparse eigenvalues .......... 218
7.9.1 The condition on the tuning parameter. .................. 219
792 Theresults. ... ..o 219
7.10 Some concluding remarks ............ ... . i 221
7.11 Technical complements for the noiseless case without sparse
CIZENVAlUCS . . . .ottt e 222
7.11.1 Prediction error for the noiseless (weighted) Lasso ........ 222
7.11.2 The number of false positives of the noiseless (weighted)
Lasso ..o 224
7.11.3 Thresholding the noiseless initial estimator. .............. 225
7.11.4 The noiseless adaptive Lasso .......................... 227
7.12 Technical complements for the noisy case without
Sparse e1genvalues . .. ...ttt 232
7.13 Selection with concave penalties .............................. 237
Problems . ... ... 241
Theory for /| /¢;-penalty procedures ............................. 249
8.1 Introduction ........... ...t 249
8.2 Organization and notation of this chapter....................... 250
8.3 Regression with group structure ................coiiernnao... 252

8.3.1 The loss functionand penalty .......................... 253



Contents Xiii
8.3.2 The empirical process . ...........ooeuuieiuneeninennn 254
8.3.3 The group Lasso compatibility condition ................ 255
8.3.4 A group Lasso sparsity oracle inequality ................. 256
835 EXtensions................ i 258
8.4 High-dimensional additive model ............................. 258
8.4.1 Theloss functionand penalty .......................... 258
8.4.2 The empirical process . .............ouueeiiiinneeeonn. 260
8.4.3 The smoothed Lasso compatibility condition ............. 264
8.4.4 A smoothed group Lasso sparsity oracle inequality ........ 265
8.4.5 Onthe choiceof thepenalty ........................... 270
8.5 Linear model with time-varying coefficients .................... 275
8.5.1 The loss functionand penalty .......................... 275
8.5.2 The empirical process . ...........c..ouueeiiiiinneeeann. 277

8.5.3 The compatibility condition for the time-varying
coefficients model............ . ... .. ... i 278

8.5.4 A sparsity oracle inequality for the time-varying
coefficients model. .......... ... . ... ... L 279
8.6 Multivariate linear model and multitask learning ................ 281
8.6.1 Theloss functionand penalty .......................... 281
8.6.2 The empirical process . .........c.vveuneiineennnennn.. 282
8.6.3 The multitask compatibility condition ................... 283
8.6.4 A multitask sparsity oracle inequality ................... 284
8.7 The approximation condition for the smoothed group Lasso . ...... 286
8.7.1 Sobolevsmoothness ..............ccooiiiiiiininna.. 286
8.7.2 Diagonalized smoothness ............................. 287
Problems . ... ... 288
9  Non-convex loss functions and /;-regularization ................... 293
9.1 Organizationof the chapter ............ ... ... . ... .. ... 293
9.2  Finite mixture of regressions model ........................... 294
9.2.1 Finite mixture of Gaussian regressions model............. 294
9.2.2 {;-penalized maximum likelihood estimator .............. 295

9.2.3  Properties of the ¢;-penalized maximum likelihood

eStimMAtor ... 299
9.2.4  Selection of the tuning parameters ...................... 300
9.2.5 Adaptive ¢;-penalization ............... ..., 301
9.2.6 Riboflavin production with bacillus subtilis .............. 301
9.2.7 Simulated example . ............o i 303
9.2.8 Numerical optimization . ..............ccooiveeeennn... 304
9.2.9 GEM algorithm for optimization ....................... 304
9.2.10 Proof of Proposition 9.2........ ... ... i, 308
9.3 Linear mixed effects models ........... ... ... ... . ... ... 310
9.3.1 The model and ¢;-penalized estimation .................. 311
9.3.2 The Lasso in linear mixed effects models ................ 312
9.3.3 Estimation of the random effects coefficients ............. 312

9.3.4 Selection of the regularization parameter ................ 313



Xiv

10

11

Contents
9.3.5 Properties of the Lasso in linear mixed effects models ... .. 313
9.3.6  Adaptive ¢;-penalized maximum likelihood estimator-. . . . .. 314
9.3.7 Computational algorithm.............................. 314
9.3.8 Numericalresults ........... ..., 317
9.4 Theory for ¢;-penalization with non-convex negative log-likelihood 320
9.4.1 Thesettingandnotation. ............................ 320
9.4.2 Oracle inequality for the Lasso for non-convex loss
functions ......... .o 323
9.4.3 Theory for finite mixture of regressions models ........... 326
9.4.4 Theory for linear mixed effects models .................. 329
9.5 Proofsfor Section 9.4 ... .. .. . 332
9.5.1 Proofof Lemma9.1 ......... ... ... ... ... . ....... 332
9.52 Proofof Lemma9.2 ...... ... ... . i 333
9.5.3 Proof of Theorem 9.1..... ... ... . ..., 335
9.54 Proofof Lemma9.3....... ... ... ... 337
Problems ... ... ... 337
Stablesolutions .......... ... .. . . 339
10.1 Organization of the chapter ............ ... ... ... ... 339
10.2 Introduction, stability and subsampling ........................ 340
10.2.1 Stability paths for linear models ........................ 341
10.3 Stability selection . ............oiiiiiiiii i 346
10.3.1 Choice of regularization and error control . ............... 346
10.4 Numericalresults. ........ ... .. . i i i 351
10.5 EXENSIONS ..ottt 352
10.5.1 Randomized Lasso . ...........ccooiiiiiiiniii.. 352
10.6 Improvements from a theoretical perspective . ................... 354
10.7 Proofs . ..o 355
10.7.1 Sample splitting . ........couieiiniin i 355
10.7.2 Proof of Theorem 10.1....... ... ... .. ... . ... .... 356
Problems . ...... ... 358
P-values for linear models and beyond . . .......................... 359
11.1 Organization of the chapter ............ ... ... ... . .. ... 359
11.2 Introduction, sample splitting and high-dimensional variable
SCLECHION & o o vttt ettt e e 360
11.3 Multi sample splitting and familywise error control .............. 363
11.3.1 Aggregation over multiple p-values ..................... 364
11.3.2 Control of familywise error.......... ..., 365
11.4 Multi sample splitting and false discovery rate .................. 367
11.4.1 Control of false discovery rate ......................... 368
11.5 Numerical resultS. .. ...t 369
11.5.1 Simulations and familywise error control ................ 369
11.5.2 Familywise error control for motif regression in
computational biology ........ ... ... .. i i, 372

11.5.3 Simulations and false discovery rate control .............. 372



Contents XV

12

11.6 Consistent variable selection ..................coiiiiiiinn... 374
11.6.1 Single sample split method ............................ 374
11.6.2 Multi sample splitmethod . .................. .. ... .... 377

11.7 EXtensions ...ttt 377
11.7.1 Othermodels.......... ..., 378
11.7.2 Control of expected false positive selections.............. 378

LT1.8 Proofs . ... 379
11.8.1 Proof of Proposition 11.1.............. ... .. ....... 379
11.8.2 Proof of Theorem 11.1.......... ... ... ... ... ... 380
11.8.3 Proof of Theorem 11.2........ ... ... ... 382
11.8.4 Proof of Proposition 11.2.............................. 384
11.8.5 Proofof Lemma 11.3 ... ... .. ... . ... .. ....... 384

Problems . .. ... ... 386

Boosting and greedy algorithms. ................................. 387

12.1 Organization of the chapter ............... ... ... ... ....... 387

12.2 Introduction and preliminaries .. ..............ccoooiieeeonnn... 388
12.2.1 Ensemble methods: multiple prediction and aggregation. . .. 388
1222 AdaBoOSt. . ... 389

12.3 Gradient boosting: a functional gradient descent algorithm . ....... 389
12.3.1 The generic FGD algorithm ........................... 390

12.4 Some loss functions and boosting algorithms ................... 392
12.4.1 ReGIeSSION . . ..ottt e e 392
12.4.2 Binary classification. ........... ...t 393
12.4.3 POISSON TEZIESSION . o vt vv ettt e e e et ee e e 396
12.4.4 Two important boosting algorithms ..................... 396
12.4.5 Other data structures and models ....................... 398

12.5 Choosing the base procedure ................ ... ... 398
12.5.1 Componentwise linear least squares for generalized linear

models ... 399
12.5.2 Componentwise smoothing spline for additive models ... .. 400
12.5.3 TIEES .« v ittt e e e 403
12.5.4 The low-variance principle .................. ... ....... 404
12.5.5 Initialization of boosting .............. ... ... 404

12.6 LyBOOSHNG . . oottt e e 405
12.6.1 Nonparametric curve estimation: some basic insights

about booSting. . .. ..ot 405
12.6.2 L,Boosting for high-dimensional linear models ........... 409

12.7 Forward selection and orthogonal matching pursuit .............. 413
12.7.1 Linear models and squared error loss .................... 414

12.8 Proofs ... .. 418
12.8.1 Proof of Theorem 12.1...... ... ... ... i, 418
12.8.2 Proof of Theorem 12.2........ .. .. ... ... . ... 420
12.8.3 Proof of Theorem 12.3...... ... .. ..., 426

Problems . ... 430



Xvi Contents
13 Graphicalmodeling .............. ... ... . . ... .. 433
13.1 Organization of the chapter ................ .. ... ... ....... 433
13.2 Preliminaries about graphical models .......................... 434
13.3 Undirected graphical models ........... ... ... ... ... ... 434
13.3.1 Markov properties for undirected graphs . ................ 434

13.4 Gaussian graphical models................ ... ... ... ... .... 435
13.4.1 Penalized estimation for covariance matrix and edge set . . .. 436
13.4.2 Nodewise regression . ... .........ueeeeuunnneeeennnn.. 440
13.4.3 Covariance estimation based on undirected graph ......... 442

13.5 Ising model for binary random variables ....................... 444
13.6 Faithfulness assumption ........... ... ... .. . ..., 445
13.6.1 Failure of faithfulness ...................... ... ....... 446
13.6.2 Faithfulness and Gaussian graphical models .............. 448

13.7 The PC-algorithm: an iterative estimation method ............... 449
13.7.1 Population version of the PC-algorithm.................. 449
13.7.2 Sample version for the PC-algorithm . ................... 451

13.8 Consistency for high-dimensional data......................... 453
13.8.1 Anillustration . ........... ..o, 455
13.8.2 Theoretical analysis of the PC-algorithm................. 456

13.9 Backtolinearmodels .......... ... ... ... . i 462
13.9.1 Partial faithfulness ................................... 463
13.9.2 The PC-simple algorithm.............................. 465
13.9.3 Numericalresults ............ . ... i, 468
13.9.4 Asymptotic results in high dimensions .................. 471
13.9.5 Correlation screening (sure independence screening) ... ... 474
13.9.6 Proofs. .. .ooo 475
Problems . ... ... 480
14 Probability and moment inequalities ................ ... ... .. ... 481
14.1 Organization of thischapter ............ ... ... .. oo, 481
14.2 Some simple results for a single random variable ................ 482
14.2.1 Sub-exponential random variables ...................... 482
14.2.2 Sub-Gaussian random variables ........................ 483
14.2.3 Jensen’s inequality for partly concave functions........... 485

14.3 Bernstein’sinequality . ..........ouuieiiniin i 486
14.4 Hoeffding’s inequality ........... ... ... 487
14.5 The maximum of p averages ................couuuiiieeinnnn... 489
14.5.1 Using Bernstein’s inequality ...................ooouu... 489
14.5.2 Using Hoeffding’s inequality .......................... 491
14.5.3 Having sub-Gaussian random variables .................. 493

14.6 Concentration inequalitieS . ............cooviuiiiinennenn... 494
14.6.1 Bousquet’sinequality................ ... ... ... 494
14.6.2 Massart’s inequality . ............c.ouuuuuunnnnnnnn.. 496
14.6.3 Sub-Gaussian random variables ........................ 496

14.7 Symmetrization and contraction ................... ..., 497



Contents Xvii

14.8 Concentration inequalities for Lipschitz loss functions............ 500
14.9 Concentration for squared error loss with random design.......... 504
14.9.1 The inner product of noise and linear functions ........... 505
14.9.2 Squared linear functions .................coviiiiiinn.. 505
14.9.3 Squared error [0SS . . . oottt 508
14.10 Assuming only lower order moments ......................... 508
14.10.1 Nemirovski moment inequality . ............... ........ 509
14.10.2 A uniform inequality for quadratic forms ............ ... 510
14.11 Using entropy for concentration in the sub-Gaussian case ........ 511
14.12 Some entropy 1eSUltS . .. ... oottt 516
14.12.1 Entropy of finite-dimensional spaces and general convex
hulls .. oo 518
14.12.2 Sets with restrictions on the coefficients ...... .......... 518
14.12.3 Convex hulls of small sets: entropy with log-term ...... .. 519
14.12.4 Convex hulls of small sets: entropy without log-term . .. ... 520
14.12.5 Further refinements . .. ......... ..., 523
14.12.6 An example: functions with (m — 1)-th derivative of
bounded variation .......... ... i 523
14.12.7 Proofs for this section (Section 14.12) ...... ............ 525
Problems . ... ... 535
Author Index . ........... .. 539
Index ... ... 543






Chapter 1

Introduction

Abstract High-dimensional statistics refers to statistical inference when the number
of unknown parameters is of much larger order than sample size. We present some
introductory motivation and a rough picture about high-dimensional statistics.

1.1 The framework

High-dimensional statistics refers to statistical inference when the number of un-
known parameters p is of much larger order than sample size n, that is: p > n. This
encompasses supervised regression and classification models where the number of
covariates is of much larger order than n, unsupervised settings such as clustering or
graphical modeling with more variables than observations or multiple testing where
the number of considered testing hypotheses is larger than sample size. Among the
mentioned examples, we discuss in this book regression and classification, graphical
modeling and a few aspects of multiple testing.

High-dimensional statistics has relations to other areas. The methodological con-
cepts share some common aspects with nonparametric statistics and machine learn-
ing, all of them involving a high degree of complexity making regularization nec-
essary. An early and important book about statistics for complex data is Breiman
et al. (1984) with a strong emphasis placed on the CART algorithm. The influential
book by Hastie et al. (2001) covers a very broad range of methods and techniques at
the interface between statistics and machine learning, also called “statistical learn-
ing” and “data mining”. From an algorithmic point of view, convex optimization
is a key ingredient for regularized likelihood problems which are a central focus
of our book, and such optimization arises also in the area of kernel methods from
machine learning, cf. Scholkopf and Smola (2002). We include also some devi-
ations where non-convex optimization or iterative algorithms are used. Regarding
many aspects of optimization, the book by Bertsekas (1995) has been an important

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 1
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 1,
© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

source for our use and understanding. Furthermore, the mathematical analysis of
high-dimensional statistical inference has important connections to approximation
theory, cf. Temlyakov (2008), in particular in the context of sparse approximations.

1.2 The possibilities and challenges

A simple yet very useful model for high-dimensional data is a linear model

)4 .
Yi=u+ Y X +e(i=1,...n), (1.1)
j=1

with p > n. It is intuitively clear that the unknown intercept tt and parameter vector
B = (Bi,...,B,)" can only be estimated reasonably well, based on n observations,
if B is sparse in some sense. Sparsity can be quantified in terms of the ¢,-norm for
1 < g < oo, the analogue (which is not a norm) with 0 < g < 1, or the {y-analogue
(which is not a norm) ||B|9 = |{j; B; # 0}| which counts the number of non-zero
entries of the parameter. Note that the notation || 3|3 = Z?:l 1B|° (where 0° = 0) is

inanalogy to [|B]|g =X/, |B;|? for 0 < g < co. In contrast to £, the £1-norm || B |1 =
27:1 |B;| measures sparsity in a different way and has a computational advantage of
being a convex function in 3.

Roughly speaking, high-dimensional statistical inference is possible, in the sense of
leading to reasonable accuracy or asymptotic consistency, if

log(p) - (sparsity(B)) < n,

depending on how we define sparsity and the setting under consideration.

Early progress of high-dimensional statistical inference has been achieved a while
ago: Donoho and Johnstone (1994) present beautiful and clean results for the case
of orthogonal design in a linear model where p = n. A lot of work has been done
to analyze much more general designs in linear or generalized linear models where
p > n, as occurring in many applications nowadays, cf. Donoho and Huo (2001),
Donoho and Elad (2003), Fuchs (2004) and many other references given later. We
present in this book a detailed treatment for high-dimensional linear and general-
ized linear models. Much of the methodology and techniques relies on the idea of
{-penalization for the negative log-likelihood, including versions of such regular-
ization methods. Such /;-penalization has become tremendously popular due to its
computational attractiveness and its statistical properties which reach optimality un-
der certain conditions. Other problems involve more complicated models with e.g.
some nonparametric components or some more demanding likelihood functions as
occurring in e.g. mixture models. We also describe results and aspects when going
beyond generalized linear models.
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For sound statistical inference, we would like to quantify uncertainty of estimates
or predictions. In particular, if statistical results cannot be validated with a scientific
experiment, as for example in bio-medicine where say biomarkers of patients cannot
be manipulated, the scientific conclusions hinge on statistical results only. In such
cases, high-dimensional statistical inference must be equipped with measures of
uncertainty, stability or significance. Our book presents some early ideas in this
direction but more refined answers need to be developed in the future.

1.3 About the book

The book is intended for graduate students and researchers in statistics or related
fields who are interested in methodological themes and/or detailed mathematical
theory for high-dimensional statistics. It is possible to read the methodology and
theory parts of the book separately.

Besides methodology and theory, the book touches on applications, as suggested
by its title. Regarding the latter, we present illustrations largely without detailed
scientific interpretation. Thus, the main emphasis is clearly on methodology and
theory. We believe that the theory has its implications on using methods in prac-
tice and the book interweaves these aspects. For example, when using the so-called
Lasso (¢;-penalization) method for high-dimensional regression, the theory gives
some important insights about variable selection and more particularly about false
positive and false negative selections.

The book presents important advances in high-dimensional statistical inference.
Some of them, like the Lasso and some of its versions, are treated comprehensively
with details on practical methodology, computation and mathematical theory. Other
themes, like boosting algorithms and graphical modeling with covariance estima-
tion, are discussed from a more practical view point and with less detailed mathe-
matical theory. However, all chapters include a supporting mathematical argumen-
tation.

1.3.1 Organization of the book

The book combines practical methodology and mathematical theory. For the so-
called Lasso and group Lasso and versions thereof in linear, generalized linear
and additive models, there are separate theory and methods chapters with cross-
references to each other.

Other chapters on non-convex negative likelihood problems, stable solutions, p-
values for high-dimensional inference, boosting algorithms or graphical modeling
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with covariance estimation are presenting in each chapter the methods and some
mathematical theory. The last chapter on probability inequalities presents mathe-
matical results and theory which are used at various places in the book. Figure 1.1
gives an overview which parts belong closely to each other.

Fig. 1.1 Organization of the book. The arrowheads indicate the directions in which the chapters
relate to each other. Chapters 2, 3, 4 and 5 describe statistical methodology and computation,
Chapters 6, 7, 8 and 14 present detailed mathematical theory, and the remaining Chapters 9, 10,
11, 12 and 13 each contain methodological, theoretical and computational aspects.

1.4 Some examples

High-dimensional data arises nowadays in a wide variety of applications. The book
contains illustrations and applications to problems from biology, a field of our own
interest. However, the presented material includes models, methods, algorithms and
theory whose relevance is very generic. In particular, we consider high-dimensional
linear and generalized linear models as well as the more flexible generalized additive
models, and both of them cover a very broad range of applications. Other areas
of high-dimensional data applications include text mining, pattern recognition in
imaging, astronomy and climate research.
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1.4.1 Prediction and biomarker discovery in genomics

In genomics with high-throughput measurements, thousands of variables such as
expressions of genes and abundances of proteins can be measured for each person
in a (pre-)clinical study. A typical goal is to classify the health status of a person,
e.g. healthy or diseased, based on its bio-molecular profile, i.e., the thousands of
bio-molecular variables measured for the person.

1.4.1.1 Further biology applications treated in the book

We briefly describe now examples from genomics which will be considered in the
book.

We consider motif regression in Chapters 2, 5, 10 and 11. The goal is to infer short
DNA-words of approximate length 8§ — 16 base pairs, e.g., “ACCGTTAC”, where a
certain protein or transcription factor binds to the DNA. We have supervised data
available with a continuous response variable ¥; and p-dimensional covariates X;
with continuous values. Thereby Y; measures e.g. binding intensity of the protein
of interest in the ith region of the whole DNA sequence and X; contains abundance
scores of p candidate motifs (or DNA words) in the ith region of the DNA. We
relate the response ¥; and the covariates X; with a linear model as in (1.1) (or an ad-

ditive model as in Chapter 5), where Xi(/ ) denotes the abundance score of candidate
word j in DNA region i. The task is to infer which candidate words are relevant for
explaining the response Y. Statistically, we want to find the variables X /) whose
corresponding regression coefficients f3; are substantial in absolute value or signif-
icantly different from zero. That is, motif regression is concerned about variable
or feature selection. The typical sizes for motif regression are n ~ 50 — 1’000 and
p ~ 100 —2'000 and hence, the number of variables or the dimensionality p is about
of the same order as sample size n. In this sense, motif regression is a fairly but not
truly high-dimensional problem.

Another example is the prediction of DNA splice sites which are the regions between
coding and non-coding DNA segments. The problem is discussed in Chapter 4. We
have binary response variables ¥; € {0,1}, encoding whether there is a splice site
or not at a certain position 7 of the DNA sequence, and categorical p-dimensional
covariates X; € {A,C,G, T }” with four categories corresponding to the letters of the
DNA alphabet. The p categorical variables correspond to p neighboring values of a
certain position i of the DNA sequence: for example, 3 positions to the left and 4 po-
sitions to the right from /, corresponding to p =7 and e.g. X; = (4,A,T,G,G,C,G).
We model the data as a binary logistic regression whose covariates consist of 7
factors each having 4 levels. The primary goal here is prediction or classification
of a new, unknown splice site. The typical sizes for DNA splice site prediction is
n ~ 10’000 — 50000 and p ~ 5 — 20. When allowing for all interactions, the num-
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ber of parameters in the logistic model is 4” which can be huge in comparison to n,
e.g., 419 ~ 1.05-10°. Depending on how many interactions we allow, the problem
may involve a million unknown parameters which is of larger order than the typical
sample size.

In Chapters 9 and 10 we illustrate some methods for a problem about riboflavin
production with bacillus subtilis. The data consists of continuous response variables
Y;, measuring the log-concentration of riboflavin, and p-dimensional covariates X;
containing the log-expressions from essentially all genes from bacillus subtilis, for
the ith individual. The goal is primarily variable selection to increase understanding
which genes are relevant for the riboflavin production rate. A linear model as in
(1.1) is often a reasonable approximation but we will also discuss in Chapter 9 a
mixture model which is an attempt to model inhomogeneity of the data. The size of
the data is about n ~ 70 — 150 and p = 4088, and hence it is a real high-dimensional
problem.

Finally, we consider in Chapter 13 an unsupervised problem about genes in two
biosynthesis pathways in arabidopsis thaliana. The data consists of continuous gene
expressions from 39 genes for n = 118 samples of different arabidopsis plants. We
illustrate covariance estimation and aspects of graphical modeling which involve
39-40/2 = 780 covariance parameters, i.e., more parameters than sample size.



Chapter 2

Lasso for linear models

Abstract The Lasso, proposed by Tibshirani (1996), is an acronym for Least Abso-
lute Shrinkage and Selection Operator. Among the main reasons why it has become
very popular for high-dimensional estimation problems are its statistical accuracy
for prediction and variable selection coupled with its computational feasibility. Fur-
thermore, since the Lasso is a penalized likelihood approach, the method is rather
general and can be used in a broad variety of models. In the simple case of a linear
model with orthonormal design, the Lasso equals the soft thresholding estimator
introduced and analyzed by Donoho and Johnstone (1994). The Lasso for linear
models is the core example to develop the methodology for ¢;-penalization in high-
dimensional settings. We discuss in this chapter some fundamental methodological
and computational aspects of the Lasso. We also present the adaptive Lasso, an im-
portant two-stage procedure which addresses some bias problems of the Lasso. The
methodological steps are supported by describing various theoretical results which
will be fully developed in Chapters 6 and 7.

2.1 Organization of the chapter

We present in this chapter the Lasso for linear models from a methodological point
of view. Theoretical results are loosely described to support methodology and prac-
tical steps for analyzing high-dimensional data. After an introduction in Section
2.2 with the definition of the Lasso for linear models, we focus in Section 2.4 on
prediction of a new response when given a new covariate. Afterwards, we discuss
in Section 2.5 the Lasso for estimating the regression coefficients which is rather
different from prediction. An important implication will be that under certain con-
ditions, the Lasso will have the screening property for variable selection saying that
it will include all relevant variables whose regression coefficients are sufficiently
large (besides potentially false positive selections). In Section 2.6 we discuss the
more ambitious goal of variable selection in terms of exact recovery of all the rele-

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 7
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 2,
© Springer-Verlag Berlin Heidelberg 2011
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vant variables. Some of the drawbacks of the Lasso can be addressed by two-stage or
multi-stage procedures. Among them are the adaptive Lasso (Zou, 2006) and the re-
laxed Lasso (Meinshausen, 2007), discussed in Sections 2.8 and 2.10, respectively.
Finally, we present concepts and ideas for computational algorithms in Section 2.12.

2.2 Introduction and preliminaries

We consider here the setting where the observed data are realizations of
(X17Y1)) MR ) (XI’HYn)

with p-dimensional covariates X; € 2~ C R? and univariate response variables
Y; € % C R. The covariates are either deterministic fixed values or random vari-
ables: regarding the methodology, there is no difference between these two cases.
Typically, we assume that the samples are independent but the generalization to
stationary processes poses no essential methodological or theoretical problems.

Modeling high-dimensional data is challenging. For a continuous response variable
Y € R, a simple yet very useful approach is given by a linear model

p .
Yi=Y BxY +e(i=1,....n), 2.1)
j=1
where €1,...,¢&, i.i.d., independent of {X;; i = 1,...,n} and with E[g;] = 0.

For simplicity and without loss of generality, we usually assume that the intercept
is zero and that all covariates are centered and measured on the same scale. Both
of these assumptions can be approximately achieved by empirical mean centering
and scaling with the standard deviation, and the standardized data then satisfies
Y=n'YL Yi=0and 67 :=n"'Y1, (x\/ ~X")2 = 1 forall j. The only unusual
aspect of the linear model in (2.1) is the fact that p > n.

We often use for (2.1) the matrix- and vector-notation
Y=XB+¢

with response vector Y1, design matrix X, ,, parameter vector 3,1 and error
vector &, 1. If the model is correct, we denote the true underlying parameter by 3°.
We denote the best approximating parameter, in a sense to be specified, by *: this
case will be discussed from a theory point of view in Chapter 6 in Section 6.2.3.
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2.2.1 The Lasso estimator

If p > n, the ordinary least squares estimator is not unique and will heavily overfit
the data. Thus, a form of complexity regularization will be necessary. We focus here
on regularization with the ¢;-penalty. The parameters in model (2.1) are estimated
with the Lasso (Tibshirani, 1996):

B =argmin<IY—XﬁII%/nMIﬁIIl) 22)
B

where [[Y — X3 = X2y (¥ — (XB))% Bl = X2, 1B;] and where A > 0 is a
penalty parameter. The estimator has the property that it does variable selection in
the sense that (A1) = 0 for some j’s (depending on the choice of 4) and f;(1)
can be thought as a shrunken least squares estimator; hence, the name Least Abso-
lute Shrinkage and Selection Operator (LASSO). An intuitive explanation for the

variable selection property is given below.

The optimization in (2.2) is convex, enabling efficient computation of the estimator,
see Section 2.12. In addition, the optimization problem in (2.2) is equivalent to

Borimal (R) = argmin ||Y —XB|3/n, (2.3)
BilIBIli <R

with a one-to-one correspondence between A in (2.2) and R in (2.3), depending
on the data (X,Y), ..., (X,,Y,). Such an equivalence holds since ||Y — XB||3/n is
convex in f with convex constraint ||3]|; < R, see for example Bertsekas (1995, Ch.
5.3).

Because of the /;-geometry, the Lasso is performing variable selection in the sense
that an estimated component can be exactly zero. To see this, we consider the rep-
resentation in (2.3) and Figure 2.1: the residual sum of squares reaches a minimal
value (for certain constellations of the data) if its contour lines hit the f1-ball in its
corner which corresponds to the first component ﬁprimal,l being equal to zero. Figure
2.1 indicates that such a phenomenon does not occur with say Ridge regression,

Brigge (1) =argmin(||Y—Xl3||%/n+7tBII%>,
B

with its equivalent primal solution

BRidge;primal (R) = argmin HY—XﬁH%/n, 2.4)
BillBl2<R

with again a data-dependent one-to-one correspondence between A and R.
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Fig. 2.1 Left: Contour lines of residual sum of squares, with [§ being the least squares estimator,
and /;-ball corresponding to the Lasso problem in (2.3). Right: Analogous to left panel but with
{xball corresponding to Ridge regression in (2.4). The figure is as in Tibshirani (1996).

2.2.1.1 Estimation of the error variance

The estimator in (2.2) does not directly provide an estimate for the error variance
o. One can construct an estimator using the residual sum of squares and the degrees
of freedom of the Lasso (Section 2.11). Alternatively, and rigorously developed, we
can estimate 3 and ¢ simultaneously using a reparametrization: this is discussed
in detail in Section 9.2.2.1 from Chapter 9.

2.3 Orthonormal design

It is instructive to consider the orthonormal design where p = n and the design ma-
trix satisfies n1X7X = Ipxp. In this case, the Lasso estimator is the soft-threshold
estimator

A

Bi(A) =sign(Z)(|Zj| = 2/2)+, Zj = (X"Y);/n (j=1,....,p=n), (2.5
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where (x)4 = max(x,0) denotes the positive part and Z; equals the ordinary least
squares estimator for f3;. This follows from the general characterization in Lemma
2.1 below and we leave a direct derivation (without using Lemma 2.1) as Problem
2.1. Thus, the estimator can be written as

Bi(A) = geofin/2(Z),

where gqof 2 (2) = sign(z)(|z] — A ) 1, is the soft-threshold function depicted in Figure
2.2. There, we also show for comparison the hard-threshold and the adaptive Lasso

threshold functions

o - — Adaptive Lasso B
- - Hard-thresholding .
Soft-thresholding e

Fig. 2.2 Various threshold functions g(-) for orthonormal design: soft-threshold (dashed line),

hard-threshold (dotted line), Adaptive Lasso (solid line). The estimators are of the form 3 i =8(Z))
with Z; as in (2.5).

estimator (see Section 2.8) for 3; defined by

B\hard,j(}’) = ghard,l/Z(Zj)> 8hard, A (Z) = Z1(|Z| < )L)7
B\adapt.,j(af) = gadapt,l/Z(Zj)a gadapt,l (Z) = Z(l _)‘/lz‘z)-ﬁ- = sign(z)(|z\ —l/|Z|)+.

2.4 Prediction

We refer to prediction whenever the goal is estimation of the regression function
E[Y|X =x] = Z?:l B;x\Y) in model (2.1). This is also the relevant quantity for pre-
dicting a new response.
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2.4.1 Practical aspects about the Lasso for prediction

From a practical perspective, prediction with the Lasso is straightforward and easy.
One often uses a cross-validation (CV) scheme, e.g., 10-fold CV, to select a reason-
able tuning parameter A minimizing the cross-validated squared error risk. In addi-
tion, we can validate the accuracy of the performance by using again some cross-
validation scheme. Regarding the latter, we should cross-validate the whole proce-
dure including the selection of the tuning parameter A. In particular, by comparing
the cross-validated risk, we can roughly see whether the Lasso yields a performance
which is better, equal or worse than another prediction algorithm. However, when
aiming for more formal conclusions, it is not straightforward to test statistically
whether the performances of two prediction algorithms are significantly different,
see for example van de Wiel et al. (2009).

2.4.1.1 Binary classification of lymph node status using gene expressions

We consider a classification problem involving a binary response variable ¥ €
{0, 1}, describing the lymph node status of a cancer patient, and we have a covariate
with p = 7129 gene expression measurements. There are n = 49 breast cancer tumor
samples. The data is taken from West et al. (2001). It is known that this is a diffi-
cult, high noise classification problem. The best methods achieve a cross-validated
misclassification error of about 20%.

Despite the binary nature of the classification problem, we can use the Lasso as in
(2.2) which yields an estimate of the conditional class probability f(x) = P[Y =
1|X =x]=E[Y|X =x]:

Of course, we could use the Lasso also for logistic regression as described later in
Chapter 3. In either case, having an estimate of the conditional class probability,
denoted here by f; (+), we classify as follows:

Z _ 1 f ('x) > 1/2,
6= {o w1

For comparison, we consider a forward variable selection method in penalized linear
logistic regression with /;-norm (Ridge-type) penalty. The optimal regularization
parameter, for Lasso and forward penalized logistic regression, is chosen by 10-
fold cross-validation. For evaluating the performance of the tuned algorithms, we
use a cross-validation scheme for estimating the test-set misclassification error. We
randomly divide the sample into 2/3 training- and 1/3 test-data and we repeat this
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100 times: the average test-set misclassification error is reported in Table 2.1. Note
that we run a double cross-validation: one inner level for choosing the regularization
parameter and one outer level for assessing the performance of the algorithm.

Table 2.1 illustrates that the forward selection approach yields, in this example,
much poorer performance than the Lasso. Forward selection methods tend to be

Lasso |f0rw. penalized logist. regr.
21.1% | 35.25%

Table 2.1 Misclassification test set error using cross-validation

unstable (Breiman, 1996): they are of a very greedy nature striving for maximal
improvement of the objective function (e.g. residual sum of squares) in every step.

Finally, we report that the Lasso selected on cross-validation average 13.12 out of
p = 7129 variables (genes). Thus, the fitted linear model is very sparse with respect
to the number of selected variables.

2.4.2 Some results from asymptotic theory

We now describe results which are developed and described in detail in Chapter 6.
For simplicity, we take here an asymptotic point of view instead of finite sample
results in Chapter 6. To capture high-dimensional scenarios, the asymptotics is with
respect to a triangular array of observations:

Pn R
Yii=Y BOXY e, i=1,...on; n=12,... (2.6)
=1

Thereby, we allow that p = p,, > n. The assumptions about &,.; are as in the linear
model in (2.1). A consistency result requires a sparsity assumption of the form

O — 18Ol = o n
1% = 18201 =o( | o7 )

see Corollary 6.1 in Chapter 6. Assuming further mild regularity conditions on the
error distribution, the following holds: for a suitable range of A = A4, < \/log(p)/n,
the Lasso is consistent for estimating the underlying regression function:

(B(A) =BT =x(B(A) —B°) = 0p(1) (n — o), 2.7)

where Xy equals n~'X”X in case of a fixed design. In the case of random design,
Xx is the covariance of the covariate X, and then (2.7) holds assuming ||3°; =
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o((n/log(n))'/*), see Greenshtein and Ritov (2004). This condition on the growth
of ||B°|| is relaxed in Bartlett et al. (2009). Note that the left hand side in (2.7) can
be written as the average squared error loss:

IX(B —B°)||5/n for fixed design,
E[(Xnew (B (1) — B°))?] for random design,

where [E is with respect to the new test observation Xpew (a 1 X p vector) and
X(B(A) —BY) is the difference between the estimated and true regression function

F&X) = fO(x).
Under certain compatibility (or restricted eigenvalue) conditions on the design X,

for A in a suitable range of the order /log(p)/n, one can show a so-called oracle
inequality for fixed design,

BIIX(B() - B/ = 0 e8P ), 28)
where sy = card(Sy) = |So| and Sp = {J; BJO = 0} is the active set of variables, and
¢ is the so-called compatibility constant or restricted eigenvalue which is a number
depending on the compatibility between the design and the ¢;-norm of the regression
coefficient. At best, it is bounded below by a positive constant. See Corollary 6.2.
An analogous result holds for random design as well. This means that, up to the
log(p)-term (and the compatibility constant ¢2), the mean-squared prediction error
is of the same order as if one knew a-priori which of the covariates are relevant and
using ordinary least squares estimation based on the true, relevant s variables only.
The rate in (2.8) is optimal, up to the factor log(p) and the inverse compatibility
constant 1/¢2.

2.5 Variable screening and || — B°||,-norms

We consider now the estimation accuracy for the parameter 3, a different task than
prediction. Under compatibility assumptions on the design X and on the sparsity
so = |So| in a linear model, it can be shown that for A in a suitable range of order

2 = \/log(p)/n,
IB(A) - B°|l, — 0 in probability (1 — o), 2.9)
where g € {1,2} and ||B|, = (X, 1B/]) /4, The asymptotic framework is again with

respect to the triangular array described in (2.6). The derivation of such results is
given in Chapter 6, Section 6.8.
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The result in (2.9) has fairly direct and interesting implications in terms of variable
screening. Consider the active set of variables

So=1{j: B} #0.j=1,....p}

which contains all covariates with non-zero corresponding regression coefficients.
Note that in a setting as in (2.6), the active set So = So., is allowed to depend on n.
Since the Lasso estimator in (2.2) is selecting some variables, in the sense that some
of the coefficients are exactly zero, we use it as screening estimator:

S(A)={j; Bj(A) #£0, j=1,...,p}. (2.10)

It is worth pointing out that no significance testing is involved. Furthermore, the
variables with corresponding non-zero coefficients remain the same across differ-
ent solutions B(A) of the optimization in (2.2), see Lemma 2.1. Note that different
solutions occur if the optimization is not strictly convex as in the case where p > n.

An important characterization of the solution (A) in (2.2) can be derived from the
Karush-Kuhn-Tucker conditions (and some additional reasoning regarding unique-
ness of zeroes).

Lemma 2.1. Denote the gradient of n='||Y — XB|3 by G(B) = —2XT (Y — XB) /n.
Then a necessary and sufficient condition for B to be a solution of (2.2) is:

G;(B) = —sign(B))A if B; #0,
IG;(B)| <A if B =0.

Moreover; if the solution of (2.2) is not unique (e.g. if p > n) and Gj(ﬁ) < A for
some solution ﬁ, then Bj = 0 for all solutions of (2.2).

Proof. For the first statements regarding a necessary and sufficient characterization
of the solution, we invoke subdifferential calculus (Bertsekas, 1995), see also Prob-
lem 4.2 in Chapter 4. Denote the criterion function by

01(B) =Y —XB|3/n+2|Bl|-

For a minimizer 3() of Q; (+) it is necessary and sufficient that the subdifferential
at B(A) is zero. If the jth component ;(4) # 0, this means that the ordinary first
derivative at B(A) has to be zero:

20,(B)
dB;

T .
‘ﬁ:ﬁ(k) = _2Xj (Y_Xﬁ)/n‘FlSlgn(ﬁj”ﬁ:B(g) =0,
where X; is the n x 1 vector (Xf’ ), e ,X,Ej ))T. Of course, this is equivalent to

Gi(B(A)) = —2X] (Y =XB(%))/n = ~Asign(B;(2)) if B;(2) # 0.
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On the other hand, if Bj(l) = 0, the subdifferential at 3(1) has to include the zero
element (Bertsekas, 1995). That is:

ifBj(l) =0: Gj(ﬁ(l)) +Ae=0forsomee € [—1,1].
But this is equivalent to
|G (B(A)) < Aif B;(2) =0.

And this is the second statement in the characterization of the solution of 3(2).
Regarding uniqueness of the zeroes among different solutions we argue as follows.
Assume that there exist two solutions (1) and (2 such that for a component j we

have 3;1) = 0 with |Gj([§(1))\ < A but B](z) # 0. Because the set of all solutions is
convex,

Bo=(1-p)B"+pp?
is also a minimizer for all p € [0,1]. By assumption and for 0 < p < 1, 3p,j #0
and hence, by the first statement from the KKT conditions, |G j(ﬁp)| = A for all
p € (0,1). Hence, it holds for g(p) = \GJ-(BP)\ that g(0) < A and g(p) = A for
all p € (0,1). But this is a contradiction to the fact that g(+) is continuous. Hence, a
non-active (i.e. zero) component j with |G j(ﬁ)| < A can not be active (i.e. non-zero)
in any other solution. a

Ideally, we would like to infer the active set Sp from data. We will explain in Section
2.6 that the Lasso as used in (2.10) requires fairly strong conditions on the design
matrix X (Theorem 7.1 in Chapter 7 gives the precise statement.)

A less ambitious but still relevant goal in practice is to find at least the covariates
whose corresponding absolute values of the regression coefficients || are substan-
tial. More formally, for some C > 0, define the substantial (relevant) covariates as

S = (i Bl =€, j=1,....p}.
Using the result in (2.9), one can show (Problem 2.2) that
for any fixed 0 < C < oo: P[S(A) DS 51 (n—w). (211
This result can be generalized as follows. Assume that
1B, (A) — B°ll1 < @, with high probability. (2.12)
We note that under compatibility conditions on the design matrix X, with 4, in the

range of order /log(p,)/n, it holds that a, = O(so+/log(p,)/n) with so = |So|. The

details are described in Theorem 6.1 in Chapter 6. Then,

for C, > a, : with high probability §,(2,) > S&"™(), (2.13)
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The proof is elementary and we leave it as Problem 2.3. (Actually, under stronger
restricted eigenvalue conditions, we have ||3,(A,) — B°||2 < b, = O(+/solog(p,)/n)

leading to C, > b, = O(+/solog(pn)/n); see Section 6.8.) It may happen that
S(r)elevam(c") = S0, that is, all non-zero coefficients are at least as large as C,, in abso-

lute value. (We call this a beta-min condition, see later.) Then, $ (An) D Sp with high
probability.

We refer to the property in (2.11) or in (2.13) as variable screening: with high prob-
ability, the Lasso estimated model includes the substantial (relevant) covariates.
Variable screening with the Lasso has a great potential because of the following
fact. Every Lasso estimated model has cardinality smaller or equal to min(n, p): this
follows from the analysis of the LARS algorithm (Efron et al., 2004). If p > n,
min(n, p) = n which is a small number as compared to p and hence, we achieve a
typically large dimensionality reduction in terms of the original covariates. For ex-
ample, in the lymph node status classification problem in Section 2.4.1, we reduce
from p = 7129 to at most n = 49 covariates.

2.5.1 Tuning parameter selection for variable screening

In practice, the tuning parameter A is usually chosen via some cross-validation
scheme aiming for prediction optimality. Such prediction optimality is often in con-
flict with variable selection where the goal is to recover the underlying set of active
variables Sp: for the latter (if at all possible), we often need a larger penalty param-
eter than for good (or optimal) prediction. It is generally rather difficult to choose
a proper amount of regularization for identifying the true active set Sp. In Section
2.11, the BIC criterion is described which, however, has no theoretical justification
for variable selection with the Lasso; Chapters 10 and 11 describe alternatives to
choosing the amount of regularization.

When sticking to cross-validation yielding a value ﬁcv, the Lasso often selects too
many variables. This ties in nicely with the screening property in (2.11) or (2.13).
We summarize that the Lasso screening procedure is very useful and easy to imple-
ment. The Lasso screening procedure yields an estimated set of selected variables

S (ﬁcv) containing with high probability Sy, or at least its relevant variables from
relevant(C)

So
As an alternative, we may pursue a Lasso screening procedure by including all
min(n, p) variables using a value A sufficiently close to zero (e.g. using the LARS
algorithm until the end of the regularization path (Efron et al., 2004)) and hence,
no tuning parameter needs to be chosen. If p > n, this tuning-free dimensionality
reduction can be very worthwhile for a first stage.

, and whose cardinality is bounded by |$(A¢cy)| < min(n, p).

The empirical fact that often $ (icv) D 8y (or replacing Sy by STlevant(Cn)) is sup-
ported by theory. Consider the prediction optimal tuning parameter supplied by an
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oracle, for random design,
P )
AT =2, = argminy E | (Ynew — Z new , (2.14)

where (Xnew, Ynew) i an independent copy of (X;,Y;) (i=1,...,n). Meinshausen and
Biihlmann (2006, Prop.1) present a simple example, with random design generated
from uncorrelated variables, where

PIS(A") 2 S0 = 1(p=n— ),
limsupP[S(1*) = So] < 1 (p>n — o). (2.15)

2.5.2 Motif regression for DNA binding sites

We illustrate the Lasso on a motif regression problem (Conlon et al., 2003) for
finding the binding sites in DNA sequences of the so-called HIFl o transcription
factor. Such transcription factor binding sites, also called motifs, are short “words”
of DNA letters denoted by {A,C,G, T}, typically 6-15 base pairs long.

The data consists of a univariate response variable Y measuring the binding intensity
of the HIF1 « transcription factor on coarse DNA segments which are a few thou-
sands base pairs long. This data is collected using CHIP-chip experiments. In order
to get to the exact short DNA “words” or motifs, short candidate DNA “words”
of length 6-15 base pairs are generated and their abundance scores are measured
within coarse DNA regions. This can be done using computational biology algo-
rithms based on DNA sequence data only, and we use a variant of the MDScan
algorithm (Liu et al., 2002). In our particular application, we have the following
data:

Y; measuring the binding intensity of HIF1 ¢ in coarse DNA segment i,

Xi<j ) measuring the abundance score of candidate motif j in DNA segment i,
i=1,....n=287; j=1,...,p=195.

A linear model fits reasonably well (see below) for relating the response to the co-
variates:

195 )
Y, = u+Z[3J Di=1,...,n=287).

The main goal in this application is variable selection to infer the relevant covariates
and hence the relevant motifs (short DNA “words”). Having scaled the covariates
to the same empirical variance, we use the Lasso with regularization parameter Acy
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from 10-fold cross-validation for optimal prediction. The fitted model has an R? ~
50% which is rather high for this kind of application. There are |S(Acy )| = 26 non-
zero coefficient estimates ﬁ j(icv) which are plotted in Figure 2.3. Based on the
methodology and theory described informally in Section 2.5 (rigorous mathematical
arguments are given in Chapters 6 and 7), there is evidence that the truly relevant
variables are a subset of the 26 selected variables shown in Figure 2.3.

motif regression
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Fig. 2.3 Coefficient estimates [;’(icv) for the motif regression data, aiming to find the HIFl o
binding sites. Sample size and dimensionality are n = 287 and p = 195, respectively, and the
cross-validation tuned Lasso selects 26 variables.

2.6 Variable selection

The problem of variable selection for a high-dimensional linear model in (2.1) is
important since in many areas of applications, the primary interest is about the rele-
vance of covariates. As there are 27 possible sub-models, computational feasibility
is crucial. Commonly used variable selection procedures are based on least squares
and a penalty which involves the number of parameters in the candidate sub-model:

B(A) = argming (IIY—XﬁII%/nMIﬁIIS) 2.16)
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where the £o-penalty is [|B[| = ?21 1(B; # 0). Many well known model selection
criteria such as the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC) or the Minimum Description Length (MDL) fall into this frame-
work. For example, when the error variance is known, AIC and BIC correspond to
A =262/n and A = log(n)c? /n, respectively. The estimator in (2.16) is infeasible
to compute when p is of medium or large size since the /y-penalty is a non-convex
function in . Computational infeasibility remains even when using branch-and-
bound techniques, cf. Hofmann et al. (2007) or Gatu et al. (2007). Forward selection
strategies are computationally fast but they can be very instable (Breiman, 1996), as
illustrated in Table 2.1 where forward selection produced a poor result. Other ad-hoc
methods may be used to get approximations for the /p-penalized least squares esti-
mator in (2.16). On the other hand, the requirement of computational feasibility and
statistical accuracy can be met by the Lasso defined in (2.2): it can also be viewed
as a convex relaxation of the optimization problem with the ¢y analogue of a norm
in (2.16).

We will first build up the methodology and theory by using the Lasso in a single
stage. We describe later in Section 2.8 how to use the Lasso not just once but in
two (or more) stages. Consider the set of estimated variables using the Lasso as in
(2.10):

$(A)={Jj Bi(A) #0, j=1,....p}.
In particular, we can compute all possible Lasso sub-models
7 ={8(1); all 1} 2.17)

with O(npmin(n, p)) operation counts, see Section 2.12. As pointed out above in
Section 2.5, every sub-model in . has cardinality smaller or equal to min(n, p).

Furthermore, the number of sub-models in .7 is typically of the order O(min(n, p))
(Rosset and Zhu, 2007). Thus, in summary, each Lasso estimated sub-model con-
tains at most min(n, p) variables,

IS(A)| < min(n, p) for every A,

which is a small number if p > n, and the number of different Lasso estimated
sub-models is typically

|7 | = O(min(n, p)),

which represents a huge reduction compared to all 27 possible sub-models if p > n.
The question of interest is whether the true set of effective variables Sy = {; ,BJO #

0, j=1,...,p} is contained in 7 and if yes, which particular choice of A will
identify the true underlying set of active variables Sp.
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An asymptotic result described below shows, assuming rather restrictive conditions,
that with probability tending to 1, So € .7 and that the Lasso is appropriate for
addressing the problem of variable selection. As in Section 2.4, to capture high-
dimensionality of the model (2.1) in an asymptotic sense, we consider the triangular
array scheme in (2.6). The main and restrictive assumption for consistent variable
selection concerns the (fixed or random) design matrix X. The condition, called
neighborhood stability or irrepresentable condition, is described with more rigor in
Section 2.6.1. Under such a neighborhood stability condition, and assuming that the
non-zero regression coefficients satisfy

inf 8] > /solog(p)/n. .18)
0

Meinshausen and Biithlmann (2006, Theorems 1 and 2) show the following: for a
suitable L = A, > /log(p,)/n,

P[S(A) = So] = 1 (n — o). (2.19)

We note that in general, the regularization parameter A = A,, needs to be chosen
of a larger order than \/log(p)/n to achieve consistency for variable selection and
hence, the regularization parameter A should be chosen larger for variable selection
than for prediction, see Section 2.5.1. See also Problem 7.5.

It is worth mentioning here, that the neighborhood stability condition on the design
is sufficient and necessary (see also the next subsection) and hence, we have a sharp
result saying when the Lasso is consistent for variable selection and when not (for
sufficiency of the condition, we implicitly assume that (2.18) holds). It should rep-
resent a warning that the restrictive assumptions on the design have some relevant
implications on the statistical practice for high-dimensional model selection: with
strongly correlated design, the Lasso can perform very poorly for variable selec-
tion. In addition, the requirement in (2.18), which we call a beta-min condition, that
all non-zero coefficients are sufficiently large may be unrealistic in practice. Small
non-zero coefficients cannot be detected (in a consistent way) and their presence is
related to the phenomenon of super-efficiency: Leeb and Pdtscher (2005) discuss
many aspects of model selection, covering in particular the issue of small regression
coefficients and its implications and challenges. Without a condition as in (2.18), we
can still have a variable screening result as in (2.13). More details about the beta-
min condition are given in Section 7.4. Finally, another difficulty comes with the
choice of the regularization parameter as indicated in (2.15).

More detailed mathematical formulations and statements are provided in Chapter 7.
Furthermore, we will describe in Chapter 13 the relation between Gaussian graphi-
cal modeling and variable selection in a linear model.
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2.6.1 Neighborhood stability and irrepresentable condition

There is certainly an interesting potential to use the Lasso for variable selection in
high-dimensional models, as described in (2.19). However, the so-called neighbor-
hood stability condition is crucial for consistent variable selection with the Lasso:
in fact, it is sufficient and essentially necessary for (2.19), see Theorems 1, 2 and
Proposition 3 in Meinshausen and Biihlmann (2006). The word “essentially” refers
to the fact that the necessary condition requires a quantity to be “< 1” while the suf-
ficient condition requires strict “< 17, analogously to the explanation after formula
(2.20).

The neighborhood stability condition is equivalent to the so-called irrepresentable
condition (at least for the case where n > p is fixed) which has been introduced by
Zou (2006) and Zhao and Yu (2006) and which is easier to describe. We denote
by £ = n~!X”X. Without loss of generality, we assume that the active set Sy =
{Js ,Bjo #0} ={1,...,s0} consists of the first so variables. Let

£ DYRIPIW)
120)7
where X 1 is a sg X 59 matrix corresponding to the active variables, X1 , = EZT_ | 1s

a 5o X (p — so) matrix and £, a (p —so) X (p — so) matrix. The irrepresentable
condition then reads:

||22,121fllsign([310,...,[35%)”00 < 0 forsome0< 0 <1, (2.20)

where ||x||.. = max;[x(/)| and sign(B,... ,B[(,)) = (sign(B),.. .,sign(ﬁl(,)))T. As
with the neighborhood stability condition, the irrepresentable condition in (2.20) is
sufficient and “essentially” necessary for consistent model selection with the Lasso:
the word “essentially” refers to the fact that the necessary condition requires the
relation “< 17, while the sufficient condition requires “< 0 for some 0 < 6 < 1,
see Theorem 7.1 in Chapter 7. At first sight, the difference between “< 17 and “< 6
for some 0 < 6 < 1 seems rather small: however, examples like the case with equal
positive correlation below show that this difference may be substantial. For the high-
dimensional setting and in terms of the triangular array as in (2.6), it is understood
that the right-hand side of (2.20) is bounded by 8 for all n € N. Furthermore, the
bound 6 < 1 in general requires that the regularization parameter A = A, needs
to be chosen of a larger order than /log(p)/n to achieve consistency for variable
selection.

Roughly speaking, the neighborhood stability or irrepresentable condition fails to
hold if the design matrix X is too much “ill-posed” and exhibits a too strong degree
of linear dependence within “smaller” sub-matrices of X. We now give some ex-
amples where the irrepresentable condition holds: we formulate them in terms of a
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general covariance matrix X. For the consequences for a sample covariance matrix,
we refer to Problem 7.6.

Equal positive correlation. X; ; =1 forall j=1,...,pand X;; = p forall j #k
with0 < p < m < 1(0< 6 < 1). Then the irrepresentable condition holds
with the constant 6. (Note the difference to 6 = 1 corresponding to the necessity
of the irrepresentable condition: then, 0 < p < 1 would be allowed). We leave the

derivation as Problem 2.4 (see also Problem 6.14).

Toeplitz structure. £;; = pl/~* for all j,k with |p| < @ < 1. Then the irrepre-
sentable condition holds with the constant 6 (Problem 2.4).

Bounded pairwise correlation. If

V/Somax s, 1/ Xkes, Z,Z,k —o

Ar%lin(zl-,l) -

<1,

where Aéin(ZLl) is the minimal eigenvalue of X ;, then the irrepresentable condi-

tion holds with the constant 0.

It is shown in Chapter 7 that the condition on bounded pairwise correlations implies
the irrepresentable condition (Corollary 7.2) and that the irrepresentable condition
implies the compatibility condition (Theorem 7.2). The latter allows to establish
oracle results for prediction and estimation as in (2.8) and (2.12), respectively and
hence, this indicates that variable selection is a harder problem than prediction or
parameter estimation.

2.7 Key properties and corresponding assumptions: a summary

We summarize here in a rough way Sections 2.4, 2.5 and 2.6 about the key properties
of the Lasso in a linear model

Y=XB%+¢
with fixed design, as in (2.1). Thereby, we do not give a precise specification of the

regularization parameter A.

For prediction with a slow rate of convergence,

IX(B —B)[13/n = Op(IB°I \/Iog(p) /n) 221

where Op(-) is with respect to p > n — oo. That is, we achieve consistency for
prediction if ||°||; < \/n/log(p). Oracle optimality improves the statement (2.21)
to a considerably faster convergence rate and estimation error bounds with respect
to the ¢1- or ¢>-norm:
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IX(B —B%)I3/n= Op(s09~*1og(p)/n),
A 1/q ,—
18~ Bllg = 0p(sy 97> \/log(p)/m). g € {12}, (222)
where sy equals the number of non-zero regression coefficients and ¢ denotes a
restricted eigenvalue of the design matrix X. The rate in (2.22) is optimal up to the
log(p) factor and the restricted eigenvalue ¢?: oracle least squares estimation where
the relevant variables would be known would have rate Op(so/n). (We note that the

result for ¢ = 2 requires stronger conditions on the design than for ¢ = 1). From
(2.22), when assuming the beta-min condition (see also (2.18) and Section 7.4)

min BYI > ¢2/s0log(p) /n, (2.23)
J=90

we obtain the variable screening property:

PSDSy] =1 (p>n— o) (2.24)

where § = {J; Bj7é0, j=1,...,p} and Sp = {}; BJO #0, j=1,...,p}. A quite
different problem is variable selection for inferring the true underlying active set Sp.
Consistent variable selection then means that

P[S=So] = 1 (p>n— o), (2.25)

These basic facts are summarized in Table 2.2, and we note that the results can be
refined as shown in Chapters 6 and 7.

property | design condition | size of non-zero coeff.

slow convergence rate as in (2.21) no requirement no requirement

fast convergence rate as in (2.22) with g = 1 compatibility no requirement

variable screening as in (2.24) restricted eigenvalue |beta-min condition (2.23)

variable selection as in (2.25) neighborhood stability |beta-min condition (2.23)
& irrepresentable cond.

Table 2.2 Properties of the Lasso and sufficient conditions to achieve them. The neighborhood
stability condition and the equivalent irrepresentable condition are discussed in Section 2.6.1. The
restricted eigenvalue assumption or the slightly weaker compatibility condition, see Section 6.2.2
in Chapter 6, are weaker than the neighborhood stability or irrepresentable condition, see Section
7.5.4 in Chapter 7.
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2.8 The adaptive Lasso: a two-stage procedure

An interesting approach to correct Lasso’s overestimation behavior, see formulae
(2.11), (2.13) and (2.15), is given by the adaptive Lasso (Zou, 2006) which replaces
the /-penalty by a re-weighted version. For a linear model as in (2.1), it is defined
as a two-stage procedure:

j=1 \[%m, jl

N 14 .
Budap (1) = argming (nY—xm%/nmz 2] ) (2.26)

where B¢ is an initial estimator.

In the high-dimensional context, we propose to use the Lasso from a first stage as
the initial estimator, tuned in a prediction optimal way. Typically, we use cross-
validation to select the tuning parameter, denoted here by Ainicv. Thus, the initial
estimator is Binit = 3(ﬁq-nitﬁcv) from (2.2). For the second stage, we use again cross-
validation to select the parameter A in the adaptive Lasso (2.26). Proceeding this
way, we select the regularization parameters in a sequential way: this is computa-
tionally much cheaper since we optimize twice over a single parameter instead of
simultaneous optimization over two tuning parameters. The procedure is also de-
scribed in Section 2.8.5 (when using k = 2).

The adaptive Lasso has the following obvious property:
Buoit; =0 = Pugaptj = 0. (2.27)

Furthermore, if \ﬁﬁnit_ j| is large, the adaptive Lasso employs a small penalty (i.e.
little shrinkage) for the jth coefficient 8; which implies less bias. Thus, the adaptive
Lasso yields a sparse solution and it can be used to reduce the number of false
positives (selected variables which are not relevant) from the first stage. This is a
desirable property since the Lasso from the first stage has the screening property
that § D Sy with high probability. Further details about variable selection with the
adaptive Lasso are described below in Section 2.8.3, Section 6.10 and Chapter 7.

2.8.1 An illustration: simulated data and motif regression

We illustrate the Lasso and adaptive Lasso on some simulated data from a linear
model as in (2.1) with p = 1000 and n = 50. We choose B; =2, B, =1, B3 =0.5
and By = ...Bioo0 =0, € ~ A(0,1) and X, ... x(1000) jid ~ _#(0,1). This
amounts to a “medium-size” (squared) signal to noise ratio

Var(f(X))

2 =55,
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where f(x) = xf3.

Figure 2.4 shows the coefficient estimates for the Lasso and the adaptive Lasso, with
initial estimator from the Lasso, respectively. The tuning parameters are selected as
follows. For the Lasso, we use the optimal A from 10-fold cross-validation. This
Lasso fit is used as initial estimator and we then choose A for the second stage in
adaptive Lasso by optimizing 10-fold cross-validation again. We empirically exploit
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Fig. 2.4 Estimated regression coefficients in the linear model with p = 1000 and n = 50. Left:
Lasso. Right: Adaptive Lasso with Lasso as initial estimator. The 3 true regression coefficients are
indicated with triangles. Both methods used with tuning parameters selected from 10-fold cross-
validation.

here the fact that Lasso is a powerful screening method: all three relevant variables
are selected, i.e., S D 8o, but it also selects 41 noise covariates. The adaptive Lasso
yields a substantially sparser fit: it selects all of the 3 relevant variables and 10 noise
covariates in addition.

We briefly described in Section 2.5.2 a problem from biology about finding binding
sites of the HIF1 o transcription factor. We recall that a linear model is a reason-
able approximation for relating a univariate response about binding intensities on
long DNA segments and a p-dimensional covariate measuring abundance scores of
short candidate motifs within long DNA segments. Figure 2.5 displays the estimated
regression coefficients using the Lasso with 10-fold cross-validation and using the
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adaptive Lasso with the first-stage Lasso fit as initial estimator and choosing A in
the second adaptive stage with another 10-fold cross-validation. The adaptive Lasso
fit is substantially sparser than using the Lasso only.
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Fig. 2.5 Motif regression for HIF 1 & transcription factor (n = 287, p = 195), see also Section 2.5.2.
Coefficient estimates using Lasso (left) or Adaptive Lasso (right), selecting 26 or 16 variables,
respectively. Both methods used with tuning parameters selected from 10-fold cross-validation.

2.8.2 Orthonormal design

In the special case of an orthonormal design with p =n and £ = n~'X"X = I,
the adaptive Lasso has an explicit solution. We consider the case with the ordinary
least squares initial estimator ﬁinitﬁj =nYX"Y);=Z; (j=1,...,p=n). Then the
adaptive Lasso equals (Problem 2.5)

A

)., Z;=X'Y/n (j=1,...,p=n), (2.28)
20z

ﬁadapt,j = SigH(Zj)(‘Zﬂ -
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where (x) = max(x,0) denotes the positive part of x. This is again a thresholding-
type estimator Bagapt,; = &(Z;), where the thresholding function g(-) is depicted in
Figure 2.2.

Figure 2.2 has the following interpretation. Hard-thresholding ghara.2 /2 (Z;) where
8hard 2 (2) = 21(|z] < A) yields a truncated least-squares estimator and hence, its bias
is only due to the truncation (thresholding). Soft-thresholding, corresponding to
Lasso, involves shrinkage, either to zero or to a value which is in absolute value
smaller than the least squares estimate by A. Hence, even if the least squares esti-
mate is large in absolute value, soft-thresholding shrinks by the additive amount A.
Finally, the adaptive Lasso “adapts” to the least squares estimate whenever the lat-
ter is large in absolute value and thus in this sense, the adaptive Lasso is less biased
than the Lasso.

There is an interesting connection to the nonnegative garrote estimator (Breiman,
1995) which is defined as

ﬁnn—gar = CAjﬁinit,j;
S S
¢= argming(n~' Y (Y= Y ¢;Binic;X;”)?
i=1 j=1

P
subjecttoc; >0 (j=1,...,p) and ch <A.
Jj=1
In the special case of an orthonormal design and using ordinary least squares as
initial estimator, the nonnegative garrote estimator is equal to the adaptive Lasso in

(2.28).

2.8.3 The adaptive Lasso: variable selection under weak conditions

For (consistent) variable selection in a linear model, the Lasso needs, as a sufficient
and essentially necessary condition, that the design matrix satisfies the neighbor-
hood stability or irrepresentable condition described in Section 2.6.1. On the other
hand, we have argued in Section 2.5 and formula (2.9) that under weaker design
conditions, the Lasso is reasonable for estimating the true underlying B° in terms
of the ||.||;-norm with ¢ € {1,2}. As an implication, the Lasso has the screening
property where § O Sy with high probability. Thereby, we assume, depending on
the Gram matrix £ = n~'X"X, that the non-zero regression coefficients are not too
small, i.e.,

min{|B;|; B; #0, j=1,...,p} > Cso\/log(p)/n

for some constant C > 0, see also formula (2.13) and the discussion afterwards how
to relax the lower bound to the order O(y/solog(p)/n).
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With the adaptive Lasso, the hope is that the two-stage process would be suffi-
cient to correct Lasso’s overestimation behavior. This can be mathematically proved
(see Corollary 7.8 and Corollary 7.9 in Chapter 7), assuming compatibility con-
ditions on the design X which are weaker than the neighborhood stability or ir-
representable condition. When assuming sufficiently large non-zero regression co-
efficients as above (and in general, the lower bound cannot be relaxed to the
order \/solog(p)/n, see Section 7.5.9), these compatibility conditions are suffi-
cient to achieve variable selection consistency in the p > n setting: denoting by

Sadapt,n(x) = SAadapt(l) = {]» B\adapt,j(zf) 7& 0}’
P[SAadapt,n<2f) = SO} —1 (I’l - °°)7

for A in the range of order y/log(p)/n. The fact that we can achieve consistent vari-
able selection with the adaptive Lasso for cases where the Lasso is inconsistent for
estimating the set Sy is related to the issue that the adaptive Lasso exhibits less bias
than the Lasso, as mentioned in Section 2.8.2. A detailed mathematical treatment
for the adaptive Lasso is given in Section 6.10 in Chapter 6 and Sections 7.8 and 7.9
in Chapter 7.

2.8.4 Computation

The optimization for the adaptive Lasso in (2.26) can be re-formulated as a Lasso
problem. We reparametrize by re-scaling the covariates as follows:

X(ﬁ = |Binit,j|X(j>a Bj = |Bﬁj .
init, j

Then the objective function in (2.26) becomes
1Y —XBII3/n+ 2Bl

This is a Lasso-problem (where we omit all variables j with ﬁinit, ; = 0). Denote

a solution by [§ and by back-transformation, we obtain a solution for the adaptive
Lasso in (2.26):

Badapt = |3init.,j‘Bj'

In particular, any algorithm for solving the Lasso can be used for computation of
the adaptive Lasso. We refer to Section 2.12 for Lasso algorithms.
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2.8.5 Multi-step adaptive Lasso

For regularization in high-dimensional problems, we may want to use more than
one or two tuning parameters. This can be achieved by pursuing more adaptive (or
weighted) Lasso iterations where every iteration involves a separate tuning param-
eter (and as described below, these parameters are “algorithmically” constrained).
The multi-step adaptive Lasso (Biihlmann and Meier, 2008) works as follows.

Multi-Step Adaptive Lasso (MSA-Lasso)

1. Initialize the weights WE.O] =1(j=1...,p).

2. Fork=1,2...,M:
Use the adaptive Lasso with penalty term

KN k1]
ALY Wi By (2.29)
Jj=1
where A* is the regularization parameter leading to prediction optimality. De-

note the corresponding estimator by f# = ¥ (A**]) In practice, the value A *!
can be chosen with a cross-validation scheme.
Up-date the weights

For k =1 (one-stage), we do an ordinary Lasso fit and k = 2 (two-stage) corresponds
to the adaptive Lasso.

We will illustrate below the MSA-Lasso on a small simulated model and a real data
set from molecular biology. Before doing so, we describe some properties of the
method which are straightforward to derive.

First, MSA-Lasso increases the sparsity in every step in terms of the number of se-
lected variables although there is not necessarily a strict decrease of this number.
This follows immediately from (2.27). Second, MSA-Lasso can be computed using
an algorithm for the Lasso problem in every step, see also Section 2.8.4. The com-
putational complexity of computing all Lasso solutions over the whole range of the
tuning parameter A is of the order O(npmin(n, p)), see formula (2.37) below. Thus,
MSA-Lasso has computational complexity O(Mnpmin(n, p)) since we select the
regularization parameters A** (k = 1,2,..., M) sequentially instead of simultane-
ously. Due to the increase of sparsity, a later step is faster to compute than an earlier
one. The computational load is in sharp contrast to computing all solutions over
the whole range of all M tuning parameters: this would require O(np(min(n, p))¥)
essential operations.
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MSA-Lasso is related to approximating a non-convex optimization with a non-
convex penalty function. This will be discussed in Section 2.8.6, Section 6.11 and
Section 7.13.

2.8.5.1 Motif regression in computational biology

Reducing the number of false positives is often very desirable in biological or
biomarker discovery applications since follow-up experiments can be costly and
laborious. In fact, it can be appropriate to do conservative estimation with a low
number of selected variables since we still see more selections than what may be
validated in a laboratory.

We illustrate the MSA-Lasso method on a problem of motif regression for finding
transcription factor binding sites in DNA sequences (Conlon et al., 2003), see also
Section 2.5.2. Such transcription factor binding sites, also called motifs, are short
“words” of DNA base pairs denoted by {A,C, G, T}, typically 6-15 base pairs long.
Beer and Tavazoie (2004) contains a collection of microarray data and a collection
of motif candidates for yeast. The latter is typically extracted from computational
algorithms based on DNA sequence data only: for every of the n genes, we have
a score for each of the p candidate motifs which describes the abundance of oc-
currences of a candidate motif up-stream of every gene. This yields a n x p design
matrix X with motif scores for every gene (i.e. rows of X) and every candidate motif
(i.e. columns of X). The idea is to predict the gene expression value of a gene based
on motif scores.

The dataset which we consider consists of n = 2587 gene expression values of a
heat-shock experiment with yeast and p = 666 motif scores. We use a training set of
size 1300 and a validation set of size 650 for selecting the regularization parameters.
The remaining data is used as a test-set. We use a linear model and the MSA-Lasso
for fitting the model which is fairly high-dimensional exhibiting n;,4i, =~ 2p.

The squared prediction error on the test-set, approximating E[(Phew — Ynew)] =
(B—B)TZ(B—B)+ Var(e) with £ = Cov(X), remains essentially constant for all
estimators. This is probably due to high noise, i.e., large value of Var(€). But the
number of selected variables decreases substantially as k increases:

|Lasso (k = 1)|1-Step (k = 2)|2-Step (k = 3)
0.6193 ‘ 0.6230 ‘ 0.6226

test set squared prediction error

number of selected variables 91 42 28

The list of top-ranked candidate motifs, i.e., the selected covariates ranked according
to |B i1, gets slightly rearranged between the different estimators. The hope (and in
part a verified fact) is that estimators with k = 2 or 3 stages yield more stable lists
with fewer false positives than using the Lasso corresponding to k = 1.
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2.8.6 Non-convex penalty functions

MSA-Lasso from Section 2.8.5 is related to approximating a non-convex optimiza-
tion with a non-convex penalty function:

p= arggnin (lY—XBH%/nﬂL ipen(ﬁj)> ;
j=1

]:
where pen(-) is a non-convex penalty function which typically involves one or sev-
eral tuning parameters.

One example is the /,-penalty for r close to 0 with the corresponding estimator
B, (A) = argming (| Y — XB|3/n+ A [ B, (2:30)

where ||B||F = Z?:l |B;|". We note that the typical value of A is now of the order
log(p) /n27r, see Section 6.11 and Section 7.13. The penalty function is non-
convex and not differentiable at zero: we define
pen (u) = Asign(u)|u|""1(u # 0) +ool(u = 0).
We discuss in Chapter Sections 6.11 and 7.13 theoretical properties of the /-
penalized least squares method with 0 < r < 1.

Another prominent example is the SCAD (Smoothly Clipped Absolute Deviation)
with the following penalty function: for a > 2,

Alul lul <A,
penlﬂ(u) ={ —(? —2aA|u| +2%)/2(a—1)] A <|u| <dl,
(a+1)A%/2 lu| > al,

where u € R, A > 0 and the usual choice for the a-parameter is @ = 3.7 (Fan and Li,
2001). The SCAD-penalized regression estimator is then

. P
Pscap(4) = argﬁmin (IIY —XBl3/n+Y Penz,a(ﬁj)> : (2.31)
=1

Jj=

The SCAD penalty function is non-differentiable at zero and non-convex. The
derivative (without the point zero) is: for a > 2,

pen, o) =sign(u) (2101 <2)+ D014 2))

For both examples, an iterative local linear approximation for computing the estima-
tor in (2.30) or (2.31) is related to a multi-step weighted Lasso procedure as follows:
in the kth iteration,
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31K - SR« k1] o plk—]
B :argﬁmln IIY*XﬁHz/n+ZWj|ﬁjI ,owi o =peny (B ).

J=1

This is similar to (2.29), except that the tuning parameter A is not depending on the
iteration. The difference between the ¢,- and the SCAD-penalty is whether the point
zero is an “absorbing state”. If B}kil] =0, the weight kail] = oo for the /,-penalty,

as appearing also in (2.29); for SCAD, however, wg»k_l]

weight in (2.29) (note that the subdifferential of peny ,(-) at zero is in [-1, 4], see
also Problem 4.2 in Chapter 4). For further details we refer the interested reader to
Zou and Li (2008).

= A in contrast to an infinite

2.9 Thresholding the Lasso

Instead of using the adaptive Lasso to obtain a sparser model fit than the initial
Lasso, see formula (2.27), we can simply threshold the coefficient estimates from
the initial Lasso estimator Binix = Binit (Ainit):

Bthres, (Ainit, 0) = Binit,j1(|Binit,j

> J).

The selected variables are then given by Sthres = {Js Blhres’ j # 0}. Furthermore, for
estimation, we should refit the selected variables by ordinary least squares:

T

Binres—refit = (X5 Xg  )1XE
ﬁthres refit ( Sthres Sthres) Sthres

where for § C {1,..., p}, Xg is the restriction of X to columns in S.

Despite that this thresholding and refitting method is rather simple, its theoretical
properties are as good or even slightly better than for the adaptive Lasso, see Sec-
tion 7.8.4 in Chapter 7. In contrast to the Lasso-OLS hybrid estimator (see Section
2.10), the method above involves an additional thresholding stage. The theory per-
spective (Section 7.8) indicates that the additional thresholding step leads to better
performance.

Regarding the selection of tuning parameters, we can proceed sequentially as for
the adaptive Lasso. Using cross-validation for optimizing prediction, first select a
regularization parameter Ay and then, for fixed Aiy;e select the threshold parameter
0 for the refitted estimator Bthres_reﬁt.
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2.10 The relaxed Lasso

The relaxed Lasso (Meinshausen, 2007) 1is similar to the adaptive or thresholded
Lasso in the sense that it addresses the bias problems of the Lasso. The method
works as follows. In a first stage, all possible Lasso sub-models in/\ .7 defined in
(2.17) are computed. Then, in a second stage, every sub-model S € .7 is considered
and the Lasso with smaller penalty parameter is used on such sub-models. That is,
we consider the estimator

Bi(,0) =avgmin{ Y~ XsBil3/n+ 9 A1l | (0< 9 < 1)

Bs

Bec (1, 9) =0, (2.32)

where § (1) is the estimated sub-model from the first stage (see (2.17)), and where
we denote by Bs = {3;; j € S} and X the n x |S| matrix whose columns correspond
to S, for some subset S C {1,..., p}. It is worth pointing out that once we have com-
puted the Lasso with parameter A in the first stage, it is often very fast to compute
the relaxed estimator in (2.32). A special case occurs with ¢ = 0 which is known
as the Lasso-OLS hybrid (Efron et al., 2004), using an OLS estimator in the second
stage. The tuning parameters A and ¢ can be selected by a cross-validation scheme.
However, unlike as for the adaptive Lasso, we should select them simultaneously.

The relaxed and the adaptive Lasso appear to perform similarly in practice. Both
procedures can be generalized to other penalties and models.

2.11 Degrees of freedom of the Lasso

Degrees of freedom are often used to quantify the complexity of a model fit and
we can use them for choosing the amount of regularization. So far, we have al-
ways mentioned cross-validation for selecting tuning parameters of the Lasso and
its multi-stage extensions. Another possibility is to use information criteria, such
as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC), which penalize the likelihood by the degrees of freedom of the fitted model.
For example, for a Gaussian linear model as in (2.1), the estimated model with fitted
values ¥; (i = 1,...,n) has BIC-score:

BIC = nlog(6?) +log(n) - df(Y),

n
i=1
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where df(Y) denotes here the degrees of freedom of the fitted model, see below. We
note that Y is not necessarily an ordinary least squares fit, as discussed next.

Degrees of freedom can be defined in various ways, particularly when using differ-
ent estimators than maximum likelihood. Stein’s theory about unbiased risk estima-
tion leads to a rigorous definition of degrees of freedom in a Gaussian linear model
as in (2.1) with fixed design and errors & ~ .4 (0,52). We denote by #Y = Y the

hat-operator which maps the response vector Y = (¥1,...,Y,)7 to its fitted values
Y = (#1,...,%,)". The degrees of freedom for a possibly non-linear hat-operator
A are then defined as
n
df(2) = Y Cov(¥;,Y;) /02, (2.33)
i=1

where the values ¥; arise from any model fitting method, see Efron (2004).

When using maximum likelihood estimation in parametric models, the degrees of
freedom equal the number of estimated parameters. Alternatively, for linear hat-
operators where Y = .Y with a hat-matrix JZ, the degrees of freedom in (2.33)
equal

df(.77) = trace() (2.34)

which is a standard formula for degrees of freedom of linear hat-operators, see
Hastie and Tibshirani (1990). The derivation of (2.34) is left as Problem 2.6.

It is unknown how to assign degrees of freedom for the Lasso, except for the low-
dimensional case where p < n. First, it is a nonlinear fitting method, e.g., soft-
thresholding in the special case of an orthonormal design, and hence, formula (2.34)
cannot be used. Secondly, counting the number of parameters seems wrong. A bit
surprisingly though, it is this second view which leads to a simple formula, although
only for the low-dimensional case where p < n.

We can easily count the number of non-zero estimated parameters, i.e., |§| It is plau-
sible that shrinkage estimators involve less degrees of freedom than non-shrunken
maximum likelihood estimates. On the other hand, the Lasso is estimating the sub-
model with the active set S ,1.e., Sis random, which adds variability and degrees of
freedom in comparison to the situation where the model would be fixed. Surpris-
ingly, the cost of search for selecting the model and the fact that shrinkage instead
of maximum likelihood estimators are used compensate each other. The following
result holds: for the Lasso with penalty parameter A and associated hat-operator
A = (L), and if rank(X) = p (i.e. not covering the high-dimensional case), the
degrees of freedom are

df(2) = E[|3]],

see Zou et al. (2007). It is not known whether this simple formula would also hold
for the case where rank(X) < p. In words, the expected number of selected vari-
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ables from the Lasso(A) estimator equals the degree of freedom. A simple unbiased
estimator for the degrees of freedom of the Lasso is then:

~

df(#) = |S.

Needless to say that this formula is extremely easy to use. We can now choose the
regularization parameter A according to e.g. the BIC criterion

Apic = argminy (nlog(n'||Y — 22 (A)Y||?) +1log(n) - [S(A))). (2.35)

As we will see in Section 2.12, the regularization path of B(A) is piecewise linear
as a function of A. Hence, the minimizer of (2.35) can be evaluated exactly.

2.12 Path-following algorithms

Usually, we want to compute the estimator 3(A) in (2.2) for many values of 4. For
example, selecting a good A, e.g., by using cross-validation, requires the computa-
tion over many different candidate values.

For the estimator in (2.2), it is possible to compute the whole regularized solu-
tion path over all values of A in the following sense. The regularized solution path
{B(X); A € R"} is piecewise linear with respect to A. That is:

there exist Ay =0 < A; < A1 < Ay =0, Y0, Y15+, Ym—1 € R? such that

N

B(A) =B(M)+ (A —A)x for b <A < st (0<k<m—1). (2.36)

There is a maximal value A, = A,,—1 where B(?L) =0forall A > Ay, and Bj(l) +
0 for A < Amax and some j. The value Ay is characterized by

Amax = Mmax |2XJTY|/n
1<j<p

This follows from the characterization of the Lasso solutions in Lemma 2.1. Typ-
ically, every Ay is a “kink point” (marking piecewise linear segments) for only a
single component of the coefficient paths 3(-). The number of different A;-values is
typically of the order m = O(n), see Rosset and Zhu (2007).

The fact that the estimator in (2.2) has a piecewise linear solution path as in (2.36)
has computational consequences. All what we need to compute are the values
(A, ) (k=0,...,m—1). Having these, we can easily reconstruct the whole regu-
larized solution path by linear interpolation. The (modified) LARS algorithm from
Efron et al. (2004) can be used for this task which bears some similarities to the
approach from Osborne et al. (2000). Its computational complexity, for computing
the whole regularization path is:
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O(npmin(n, p)) essential operation counts. (2.37)

Hence, if p > n, O(npmin(n, p)) = O(p) and we have a computational complexity
which is linear in the dimensionality p.

Figure 2.6 shows the whole regularization path for Lasso in a linear model, based on
areal data example with n = 71 samples and p = 4088 covariates which is described
in more detail in Section 9.2.6 (but here with a smaller more homogeneous sub-
sample). The coefficients ;(4) are plotted as a function of a re-scaled A parameter.
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Fig. 2.6 Regularization path for Lasso in a linear model with n = 71 and p = 4088. x-axis:
1BA)]1/max{||B(A)]|1; A}, and y-axis: ﬁj, /6]2(n — 1) where 6j2 denotes the empirical variance
of XU,

Although the LARS algorithm is exact for the whole piecewise linear regularization
path, other algorithms described in Section 2.12.1 can be considerably faster for
computing the Lasso over a large grid of A-values (Friedman et al., 2007a, 2010). In
addition, for other models and penalties, there is no piecewise linear regularization
path any more and other algorithms are needed.
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2.12.1 Coordinatewise optimization and shooting algorithms

For very high-dimensional but sparse problems, coordinate descent algorithms are
often much faster than exact path-following methods such as the LARS-algorithm
(Efron et al., 2004). This happens because coordinatewise up-dates are often very
fast, e.g., explicit as in (2.38) in case of squared error loss, and they also exploit
sparsity when using an active set modification as outlined in Section 2.12.1.1. In ad-
dition, when using other loss functions than squared error or when having a group-
structure in the penalty function, exact path-following algorithms are not available
and other optimization algorithms are needed. These two facts are the main moti-
vation to focus on coordinatewise methods. We refer to Efron et al. (2004) for a
description of the LARS algorithm for solving the Lasso optimization in (2.2).

~

Despite the fact that the regularized solution path for B(A) in (2.2) is piecewise
lineari see (2.36), it is often sufficient (or even better) for practical purposes to com-
pute (A ) on a grid of values A = {0 < Agriq;1 < Agria2 < Agrid ¢ }- In particular, the
value A; in (2.36) are data-dependent and hence, they change for say every cross-
validation run. Therefore, when determining the best regularization parameter A
with cross-validation, we have to use fixed (data-independent) candidate values for

A anyway (or work with a fixed parameter on another scale).

We recommend to choose the grid to be equi-distant on the log-scale as follows.
Choose

Afgrid,g = )Lmax = 121;?;; |2XZY|/H7
)Lgrid,kfl = )Lgrid,k exp(—C),

where C > 0 is a constant. Typically, we would choose C as a function of Agq ;: for
the latter, we recommend

~ 1
A’grid,l"’n ’

and hence

_ IOg(;LmaX) - 1Og(z'grid,l) .

C
g—1

The general idea is to compute a solution ﬁ (Agrid,¢) and use it as a starting value for
the computation of ﬁ(?tgrid’g,l) and so on: the value ﬁ(lgrid,k) is used as a warm-
start for the computation of [§ (),grid,k,l ). Hence, we will focus in the sequel on the
computation for a single regularization parameter A.

The simplest algorithm which exploits the characterization from Lemma 2.1 pursues
coordinate descent minimization. Denote by

01(B) =Y —XB|3/n+A|Bll
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the criterion function in (2.2). Furthermore, let
Gj(B)=—-2X](Y-XB)/n (j=1,...,p)

be the gradient of ||[Y — Xf|2/n. Consider the following algorithm.

Algorithm 1 Coordinate descent minimization

1: Let B € R” be an initial parameter vector. Set m = 0.
2: repeat
3: Increase m by one: m <— m—+ 1.
Denote by " the index cycling through the coordinates {1, ..., p%:
I = Im=1 1 1 mod p. Abbreviate by j = .7 the value of .1"]
4 if|G;(B™ 1)\</1 setﬁm]*

otherw1se. Bj =argminQ (ﬁ
J

m— 1])

s

where ﬁ 11 is the parameter vector where the jth component is set to zero and ﬁ[m s
the parameter vector which equals B m—1] except for the jth component where it is equal to
B (i.e. the argument we minimize over).

5: until numerical convergence

Due to the nature of the squared error loss, the up-date in Step 4 in Algorithm 1 is
explicit (Problem 2.7): for j = . [m]

il — sign(Z)(1Zj| =2 /2)+

’ 217] 7
Zi=XI (Y- XB" ) n, £ =n"'XTX, (2.38)
where [3 I denotes the parameter vector whose jth component is set to zero.

Thus, we are doing componentwise soft-thresholding. For more details about such
an algorithm and variations for other Lasso-related problems, we refer to Friedman
et al. (2007a). Fu’s shooting algorithm for the Lasso (Fu, 1998) is a special case of
a coordinate descent approach.

Numerical convergence of the coordinate descent minimization algorithm can be
established as follows. First, coordinatewise minima are attained since Q, (8) =
Y —XB|13/n+A||B|l1 — o if ||B]|1 — . Second, we now argue that Step 4 min-
imizes the convex function h(f;) = Q;L(ﬁ[m 1y with respect to B;, where ﬁj_”;fl]
denotes the parameter vector which equals B"~!] except for the jth component
where it is equal to B;; note that i(f3;) serves only as a notational abbreviation
where all other parameters B,Em_” (k # j) are fixed. Since A(-) is not differentiable
everywhere, we invoke subdifferential calculus (Bertsekas, 1995). The subdiffer-
ential of A(-) is the set dh(B;) = {G; (ﬁ " 1]) +Ae,ec E(Bj)} E(Bj) ={ecR:
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sign(B;) if Bj # 0 and ||e|| < 1if B; = 0}. The parameter 3; minimizes i(f3;) if and
only if 0 € dh(;) which is equivalent to the formulation in Step 4.

Thirdly, cycling through the coordinates Flml = I...,p,1,... m=1,2,...),1e,a
Gauss-Seidel algorithm, can be shown to converge to a stationary point. Numerical
convergence of such a Gauss-Seidel algorithm seems plausible, but exact mathe-
matical arguments are more involved crucially exploiting that the penalty function
A||B|l1 is a separable function of B.! We refer for details to the theory in Tseng
(2001). In particular, conditions (A1), (B1) - (B3) and (C2) from Tseng (2001) hold
and furthermore, by Lemma 3.1 and Proposition 5.1 in Tseng (2001), every cluster
point of the sequence { fBlm] }m>0 is a stationary point of the convex function Q) (-)
and hence a minimum point.

Taking the three steps together, we summarize the result as follows.

Proposition 2.1. Denote by B[’"] the parameter vector from Algorithm 1 after m iter-
ations. Then every cluster point of the sequence {p M:m=0,1,2,.. .} is a minimum

point of 0.(").

We note that the iterates 3 ] can be shown to stay in a compact set (because of the
penalty term) and thus, the existence of a cluster point is guaranteed. Proposition
2.1 also follows from the more general result in Proposition 4.1 in Chapter 4.

The coordinatewise optimization above can easily incorporate the more general case
where some parameters are unpenalized, i.e.,

A

B= arggnin 0,.(B),

14
01(B) =Y = XB3/n+4 Y IBjl,

Jj=r+1

and thus, B,..., B, are unpenalized. The up-dating step in the optimization algo-
rithm then looks as follows:

itje{l,....r}: B :argﬁmingl(ﬁk;*”),

)

ifje{r+1,...,p}:

if ‘Gj(ﬁkr}_”)\ < A: set [3][”’] =0,

otherwise: 3 J[m] = argmin Q; (ﬁk’;ﬁl]).
j

A function f(B) is called separable (into convex functions) if f(B) = Zf:l fi(Bj) for some
convex functions f;(-).
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2.12.1.1 Active set strategy

An active set strategy can greatly improve computational efficiency for sparse, high-
dimensional problems where only few among very many variables are active.

When cycling through the coordinates, we focus on the current active set and visit
only “rarely” the remaining variables (e.g. every 10th iteration) to update the active
set.

2.13 Elastic net: an extension

A double penalization using a combination of the ¢;- and ¢,-penalties has been
proposed by Zou and Hastie (2005):

Braivern (A1, 22) = argmin (Y = XB|[3/n+ 21| Bl + A2 [IBI5) . (2.39)
B

where 41,42 > 0 are two regularization parameters and [|B|3 = ¥"_, B;. Zou and
Hastie (2005) called the estimator in (2.39) the “naive elastic net”. A correction
leading to the elastic net estimator is then:

Ben(A1,22) = (14 22) Buaivern (A1, A2).- (2.40)

The correction factor (1 + A;) in (2.40) is best motivated from the orthonormal de-
sign where n1XTX = I. Then, see Problem 2.8,

3 sign(Z)(|Z;| — A /2
Braivern, j (A1, A2) = gn( j)l(|+jx‘2 /)+7

Z;=XIY/n (j=1,....p=n), (2.41)

where (x) = max(x,0). This should be compared to the Lasso in formula (2.5).
We see that the naive elastic net estimator has very bad bias behavior if Z; = BOLs, i
is large. The correction factor then leads to the fact that the elastic net estimator in
(2.40) equals the Lasso for the case of orthonormal design.

The reason for adding an additional squared ¢»-norm penalty is motivated by Zou
and Hastie (2005) as follows. For strongly correlated covariates, the Lasso may
select one but typically not both of them (and the non-selected variable can then
be approximated as a linear function of the selected one). From the point of view
of sparsity, this is what we would like to do. However, in terms of interpretation,
we may want to have two even strongly correlated variables among the selected
variables: this is motivated by the idea that we do not want to miss a “true” variable
due to selection of a “non-true” which is highly correlated with the true one. For
more details, we refer the reader to Zou and Hastie (2005). From the prediction
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point of view, there can be gains as well by using the elastic net in comparison to
the Lasso (Bunea, 2008; Hebiri and van de Geer, 2010).

Computation of the elastic net estimator can be done by using an algorithm for the
Lasso, see Problem 2.9.

Problems

2.1. Threshold estimator

(a) Show that in the orthonormal case, the Lasso equals the soft-threshold estimator
which is depicted in Figure 2.2.

(b) Show that the /y-penalized estimator in (2.16) equals the hard-threshold estima-
tor which is depicted in Figure 2.2.

2.2. Variable screening
Assume that (2.9) holds. For fixed 0 < C < oo, prove formula (2.11).

2.3. Variable screening (Similar to Problem 2.2).
Assume that (2.12) holds. Prove formula (2.13).

2.4. Irrepresentable condition

(a) Consider the case of equicorrelation for X: X; ; = 1 for all j =1,...,p and
Xik=p foralljyékw1th0<p<m<l (0 < 6 < 1). Show that the

irrepresentable condition (2.20) holds with constant 6.

Hint: the inverse is given by

_ 1 p
Tl e (I, —
—p P T - 1p

See also Problem 6.14 and Problem 10.4.

(b) Consider equicorrelation for X as in (a) but now with potentially negative values:
the range —1/(p—1) < C; < p <, < 1 is the set where X is strictly positive defi-
nite. Consider now the restricted range —6 /(250 — 1) < p < =575 (0< 6 < 1).
Show that the irrepresentable condition (2.20) holds with constant 9

Hint: use again the formula for the inverse in (a).

(c) Consider the case of Toeplitz structure for X: X; ; =1 for all j =1,...,p and
Ly = pli=H for all j # k with 0 < |p| < 6 < 1. Show that the irrepresentable
condition (2.20) holds with constant 8. Use the fact that £~ ! is a banded matrix
with a diagonal with equal entries and two side-diagonals with equal entries, i.e.,
i i=a(1<j<p).E; =bfork=j+1(1<j<p—1)andk=j—1(2<;<p),
and X! =0fork>j+2(1<j<p-2)andk < j—2(3 << p),andexploiting
the identity X! = 1.

th), 1 =101 = (1,1,...,1).
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2.5. Adaptive Lasso

(a) For the orthonormal case, derive the threshold function for the adaptive Lasso
with ordinary least squares initial estimator. This threshold function is depicted in
Figure 2.2.

Hint: Consider every component and the parameter 1; = 1 /|Z;|.

(b) For the orthonormal case, show that the nonnegative garrote estimator with or-
dinary least squares initial estimate equals the adaptive Lasso.

2.6. Degrees of freedom for linear hat-operators
Prove that formula (2.34) holds for linear hat-operators Y = 72’Y where 77 is linear
(i.e. A is a n X n matrix).

2.7. Coordinate descent algorithm
Prove formula (2.38).

2.8. Prove the threshold formula (2.41) for the elastic net in the orthonormal case.

2.9. Show that the elastic net estimator for fixed A, can be computed by using a
Lasso algorithm.

Hint: Consider the definition in (2.39) and make an appropriate enlargement of the
design matrix using the (additional) matrix MIPX -



Chapter 3

Generalized linear models and the Lasso

Abstract Generalized linear models build a unified framework containing many ex-
tensions of a linear model. Important examples include logistic regression for binary
responses, Poisson regression for count data or log-linear models for contingency ta-
bles. Penalizing the negative log-likelihood with the ¢;-norm, still called the Lasso,
is in many examples conceptually similar to the case with squared error loss in lin-
ear regression due to the convexity of the negative log-likelihood. This implies that
the statistical properties as well as the computational complexity of algorithms are
attractive. A noticeable difference, however, occurs with log-linear models for large
contingency tables where the computation is in general much more demanding. We
present in this chapter the models and estimators while computational algorithms
and theory are described in more details in Chapters 4 and 6, respectively.

3.1 Organization of the chapter

This is a short chapter. After an introduction with the description of the Lasso and
the adaptive Lasso for generalized linear models, we describe the loss functions
for binary responses and logistic regression in Section 3.3.1, for Poisson regression
in Section 3.3.2 and for multi-category responses with multinomial distributions
in Section 3.3.3. We develop in Section 3.3.3.1 a few more details for the rather
different case of contingency tables.

3.2 Introduction and preliminaries

Generalized linear models (GLMs) (McCullagh and Nelder, 1989) are very useful
to treat many extensions of a linear model in a unified way. We consider a model
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with univariate response Y and p-dimensional covariates X € 2~ C R”:
Yi,...,Y, independent
(B = ) = o+ 3 B G
i=

where g(-) is a real-valued, known link function, u denotes the intercept term and
the covariates X; are either fixed or random. We use the notation

p o
f) = fup()=p+ Y Bpt/
=1

to denote the linear predictor. An implicit assumption of the model in (3.1) is that the
(conditional) distribution of ¥; (given X;) is depending on X; only through the func-

tion g(E[Y;|X;]) = fu p(Xi) = 1+ Zf: B inU ). That is, the (conditional) probability
or density of Y |X = x is of the form

pOy[x) = pu,g(]x)- (3.2)

Obviously, a linear model is a special case of a generalized linear model with the
identity link function g(x) = x. Other well-known examples are described below.

3.2.1 The Lasso estimator: penalizing the negative log-likelihood

For generalized linear models, the Lasso estimator is defined by penalizing the neg-
ative log-likelihood with the ¢;-norm.

The negative log-likelihood equals
— Y log(py,p(Yi[X1)),
i=1

where p, g(y|x) is as in (3.2). This expression can be re-written (and scaled by the
factor n~!) as an empirical risk with a loss function p(.,.):

n 'Y pup(X.Y:),
i=1
Pup (x,y) = — 10g<Pu,ﬁ lx)).

For many examples and models, the loss function p, g(x,y) is convex in u, B for all
values x,y. In particular, if the (conditional) distribution of ¥|X = x is from a sub-
class of the exponential family model (see McCullagh and Nelder (1989, Section
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2.2)), we obtain convexity of py, g(x,y) = Py p)(x,y) which depends on , B only
through some linear function A(u, 8). Rather than striving for the most general set-
up, we will present important examples below.

The ¢;-norm penalized Lasso estimator is then defined as:

a),B(1) = arglzlin (n' ipu,ﬁ(Xi>1’i)+/1llﬁ||1> :
H,

i=1

Usually, we do not penalize the intercept term. Sometimes, we absorb u (and f1)
in the notation with 8 (and ) where the intercept is then denoted by By (and Bp)
and left unpenalized. Computation algorithms for solving the above optimization
problem are described in Sections 4.7.1 and 4.7.2 in Chapter 4, noting that /;-norm
penalization is a special case of the Group ¢;-penalty (described there).

The two-stage adaptive Lasso, introduced in Section 2.8 can also be used for this
more general framework:

o (e 2 1)
(“(A)vﬁ(l))adapt:argmm n! Zpu,ﬁ(xivyi)"_a' Z e )
w.p i=1 j=1 | Binit, j|
where ﬁini[ is an initial estimator, for example from the Lasso above.

The properties of the Lasso in generalized linear models are very similar to the linear
model case. We have again high-dimensional consistency, oracle inequalities (and
hence optimality) and variable screening (and selection) properties. The theory can
be derived in a similar fashion as for the Lasso in linear models, see Sections 6.3 -
6.8 in Chapter 6.

3.3 Important examples of generalized linear models

We discuss here a few prominent examples of generalized linear models which are
often used in practice.

3.3.1 Binary response variable and logistic regression

Consider the case of logistic regression where ¥;|X; = x ~ Bernoulli(7(x)), i.e.,
Binomial(1,7(x)), with

X P .
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This is a GLM with link function g(7) = log(1%;), where 7 € (0,1).
The negative log-likelihood equals

—Zlog pup(YilXi)) Z{ Yifup(Xi) +log(1+exp(fup(Xi)}, (3.3)

i=1

see Problem 3.1, and the corresponding loss function is

pu,ﬁ(xa)’) “"_Zﬁj ) +log(1+exp N"‘Zﬁjx
Jj=

In terms of the linear predictor f(x), this loss function is of the form

P(x,y) = hy(f(x)) = —yf +log(1+exp(f)),

where we abbreviate f(x) = f on the right hand side. This is a convex function in f
since the first term is linear, the second term has positive second derivative and the

. . . o p i
sum of convex functions is convex. Furthermore, f = f, g(x) = i +X Bjx(f) is
linear and hence

Pu,p(%,y) = hy(fup(x))
is convex in u, 8 as a composition of a convex function A, (-) (convex for all y) and
a linear function.

For describing the margin-type interpretation, cf. Hastie et al. (2001) or Scholkopf
and Smola (2002), we can rewrite the loss function as

p(f,y) = log(1 +exp(—(2y —1)f)) = log(1 +exp(=yf)),
y=2y-1le{-1,1}, (34)

see Problem 3.2. This formulation shows that the loss function is a function of the
single argument jf, the so-called margin in binary classification. By scaling, the
equivalent loss function is often used:

p(fay):10g2(1+exp(_)7f)>7 (35)

which equals one at the value zero and hence, it becomes an upper bound of the
misclassification error, see Figure 3.1. Regarding the latter, note that the natural
classifier is

1if f(x) >0
“lx) = {o ;ff(x) <0

since f(x) > 0 is equivalent to 7(x) > 0.5. Hence the misclassification loss (where
both misclassification errors are assigned a loss being equal to one) is given by
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pmisclass(fay) = 1(}7f < 0)7 y=2y—1,

where 1(-) denotes the indicator function.

Loss functions for binary classification

\
\

loss

-4 -2 0 2 4
margin : (2y—1)f

Fig. 3.1 Misclassification loss (solid line) and logistic loss in (3.5) (dashed line) as a function of
the margin jf = (2y—1)f.

3.3.2 Poisson regression

For a response variable Y taking values in 0,1,2,..., i.e., count data, we consider
Poisson regression where the (conditional) distribution ¥;|X; = x ~ Poisson(A(x)).
Using the link function

log(A(x)) =+ Z B = fup®)

we have a GLM as in (3.1).
The negative log-likelihood equals

—Zlog pu.p (YilXi)) Z{ Yifup(Xi) +exp(fup(Xi))},

i=1
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and the corresponding loss function is

puﬁ(’@)’) ‘quZﬁj +exp .LLJFZBJ
j=1

The first term is linear and hence convex in i, 8, the second term is a composition
of a convex and a linear function and hence convex in u,f, and since the sum of
convex functions is convex, the loss function is convex in y, 8.

3.3.3 Multi-category response variable and multinomial
distribution

The multinomial distribution is an example with a vector-valued link function. Con-

sider a categorical response ¥ € {0,1,...,k— 1} with labels 0,1,...,k— 1, as ap-

pearing in multi-category classification problems. We assume that the (conditional)

distribution of Y|X = x ~ Multinom(7(x)), where m(x) = m(x),. .., m—_1(x) with
k=) m,(x) = 1 for all x. A link function

g: (0, DF R = (mo,....,m1) = f=(for--» fie1)
is easier to describe by its inverse

exp(fr)

71 o o
g (f)=m 72,;0“})(” r

This automatically ensures that Z’;;é 7, = 1. Thus,

k—1
log(m,) = fr —log()_ exp(f;))
s=0

The linear predictors are parametrized as
p .
[ =+ Y B, r=0,.. k-1
j=1

Note that this is over-parametrized it would suffice to determine say fi,..., fr—1
(without fp), but the constraint ):r 0 77:r( ) =1 for all x is automatically enforced
with such an over-parametrized formulation.

The negative log-likelihood is

n k—1

n k—1
—ZZlog T (X)1(Yi = r) =Y log( ) exp(fi(X:) Zl i =r)f(X,
i=1 s=0

i=1r=
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Vg xU)
Jr(Xi) = pr + Z BriX;” .
j=1
The corresponding loss function is
k—1 V4 ) k—1 p )
Pup(xy) =log( Y exp(tts+ Y Buje) = Y1 =)+ ) Brj”).
5=0 j=1 =0 j=1

This is again a convex function in {u,, B.j; r=0,...,k—1, j=1,...,p}. The
reasoning is as follows. The second term includes linear functions only and hence
convexity follows since the sum of convex functions is convex. The first term is of
the form

k=1 p ) p )
log( Y exp(us+ Y Brjx)) = log(Yexp(fi(ks. B))), fs = 1t + ¥ Bejxtd).
s=0 j=1 s j=1

The so-called “log-sum-exp” function, see Section 3.1.5 in Boyd and Vandenberghe
(2004),

log(zexp(fs)) (3.6)

is convex in fy,..., fr—1, see Problem 3.3. Hence, the composition of linear func-
tions fi(ls,Bs) (s =0,...,k—1) with the convexity of the “log-sum-exp” func-
tion (see Problem 3.3) implies that the first term is convex in the parameters
{tr, Brjs r=0,...,k—1, j=1,...,p} as well, and hence we have convexity of
the loss function (since sums of convex functions are convex).

3.3.3.1 Contingency tables

The multinomial distribution also arises when modeling contingency tables. Con-
sider g categorical factor variables Z ), ..., 7% where each factor Z) € .# () 7))
denoting a categorical space of d'/ ) levels (labels). Thus, the ¢ factors take values in
the categorical space

I=9Ux . x g

and we can enumerate . = {r; r=0,1,...,k— 1} where k = 23:1 |.#()|. We then
denote by

The observations in a contingency table are Yi,...,Y, i.i.d. with ¥; € .# and ¥; ~
Multinom(7) with k = |.#|-dimensional 7 satisfying Zk;(]) 7, = 1. Very often, a

Iz
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log-linear model is used:

log(m) = u+XB,

with k x p (k= |.#]) design matrix X which encodes the full saturated model (with
p = k) or some sub-model including only interaction terms up to a certain order
(with p < k). Typically, an intercept term t is used to ensure that Z’j;& 7, = 1. This
can be enforced in the same way as for multinomial regression described above. We
use

=

o+ (XB)) o
(XB))’ |

)
Lyerexp(p+(XB)s)

which implies

log(m,) = p+ (XB), —log( ), exp(u +(XP);)), re 7.
seI

With the parametrization in (3.7), the negative log-likelihood equals

= Y tox(pus(10) = - X, T 10 =) 1+ (XB), —lox( L explu = (XBJ)}

i=1 seS
(3.8)

see Problem 3.4, and the corresponding loss function, involving y only, is

Pup(y) =log( ) exp(u+(XB)) — Y 1y=r)(t+(XB),).
seS re s

The loss function is convex in i, by the same argument as for the corresponding
loss for multinomial regression.

The Lasso estimator is then

op= mgrglﬂ(ﬂ Zpuﬁ +/1|ﬁ||1>

This Lasso estimator has the interesting property that it can be used for problems
where many cells have zero counts, i.e., Y, 1(¥; = r) = 0 for many r € .#, which
arises when having a moderate number ¢ of factors implying that k = |.7| is very
large. This is in sharp contrast to the unpenalized maximum likelihood estimator, see
Problem 3.5. From a conceptual point of view, one would often aim for an estimator
where whole main or interactions terms (with respect to the structure of the factors
ZW ..., Z@) are zero or not: this can be naturally achieved with the group Lasso
described in Chapter 4, see Dahinden et al. (2007).

A major drawback of the Lasso estimator as defined above (also without penalty;
and also of the Group Lasso) is its computational cost. Even when restricting the
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model to lower-order interactions (with p < k), the row-dimension of X remains to
be k = |.#| and the computation of the estimator is at least linear in k. Thus, this
naive Lasso strategy can only work for say k up to say 10%. For example, if ev-
ery factor has 2 levels only, this would require approximately 2¢ < 10° and hence
g < log,(10%) ~ 20: that is, we cannot handle more than 20 factors with such an
approach. For special cases with binary factor variables, fast componentwise /-
penalization is possible (Ravikumar et al., 2009b). Alternatively, decomposition ap-
proaches based on graphical models can be used (Dahinden et al., 2010).

Problems

3.1. Derive the negative log-likelihood in (3.3) for the binary response case with the
logistic link function.

3.2. Derive formula (3.4), i.e., the margin point of view of logistic regression.

3.3. Prove that the log-sum-exp function in (3.6) is a convex function in its k argu-
ments fo, ..., fr—1. Hint: Prove this by directly verifying the definition of a convex
function

flax+(1—a)y) <af(x)+(1—a)f(y)

forall x,y, 0 <a < 1.
3.4. Derive the negative log-likelihood in (3.8) for contingency tables.

3.5. Consider a contingency table as in Section 3.3.3.1.

(a) Assume that all cell counts are non-zero, i.e., Yr | 1(Y; =r) #0 forall r € .7.
Derive the maximum likelihood estimator for 7, (r=0,...,k—1).

(b) Construct an example of a contingency table where the maximum likelihood
estimator does not exist.

Hint: use an example with zero cell counts.



Chapter 4
The group Lasso

Abstract In many applications, the high-dimensional parameter vector carries a
structure. Among the simplest is a group structure where the parameter is partitioned
into disjoint pieces. This occurs when dealing with factor variables or in connection
with basis expansions in high-dimensional additive models as discussed in Chapters
5 and 8. The goal is high-dimensional estimation in linear or generalized linear mod-
els being sparse with respect to whole groups. The group Lasso, proposed by Yuan
and Lin (2006) achieves such group sparsity. We discuss in this chapter method-
ological aspects, and we develop the details for efficient computational algorithms
which are more subtle than for non-group problems.

4.1 Organization of the chapter

We present in this chapter the group Lasso penalty and its use for linear and gen-
eralized linear models. The exposition is primarily from a methodological point
of view but some theoretical results are loosely described to support methodology
and practice. After an introduction in Section 4.2 with the definition of the group
Lasso penalty, we present in Section 4.3 the important case with factor variables
including a specific example. In Section 4.4 we sketch the statistical properties of
the group Lasso estimator while a mathematically rigorous treatment is presented
later in Chapter 8. In Section 4.5 we discuss a slight generalization of the group
Lasso penalty which is more flexible and we explain more about parametrizations
and their invariances. In Section 4.7 we give a detailed treatment of computational
algorithms for the Group Lasso. Thereby, the case with squared error loss is sub-
stantially simpler than for non-squared error losses as arising in generalized linear
models.
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4.2 Introduction and preliminaries

In some applications, a high-dimensional parameter vector  in a regression model
is structured into groups ¢, ... ,%, which build a partition of the index set {1,..., p}.
That is, U7=1gj ={1,...,p} and 4;N %, = 0 (j # k). The parameter vector 3 then
carries the structure

ﬁ = (ﬁ{f],"'vﬁgq)ﬂ Bf//j = {ﬁr; }"Egj}. 4.1

An important class of examples where some group structure occurs is in connec-
tion with factor variables. For example, consider a real-valued response variable Y
and p categorical covariates XM, XP) where each X\/) € {0,1,2,3} has 4 lev-
els encoded with the labels 0,1,2,3. Then, for encoding a main effect describing
the deviation from the overall mean, we need 3 parameters, encoding a first-order
interaction requires 9 parameters and so on. Having chosen such a parametrization,
e.g., with sum contrasts, the group structure is as follows. The main effect of X 1)
corresponds to fy, with || = 3; and likewise, the main effect of all other factors
XU corresponds to By, with || =3 forall j=1,..., p. Furthermore, a first-order

interaction of X(!) and X(®) corresponds to By, with [, =9, and so on. More
details are described in Section 4.3.

Another example is a nonparametric additive regression model where the groups ¥;
correspond to basis expansions for the jth additive function of the jth covariate X ),
A detailed treatment is given in Chapter 5.

4.2.1 The group Lasso penalty

When estimating models with a group structure for the parameter vector, we often
want to encourage sparsity on the group-level. Either all entries of ﬁgj should be
zero or all of them non-zero. This can be achieved with the group Lasso penalty

q
Ay mjlBg |2, (4.2)
j=1

where ||By||2 denotes the standard Euclidean norm. The multiplier m; serves for
balancing cases where the groups are of very different sizes. Typically we would
choose

=V,

where T denotes the cardinality |¥;|.
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The group Lasso estimator in a linear or generalized linear model as in (2.1) or (3.1)
respectively is then defined as

A

B(A)= argﬁmian (B),

n q
0.(B)=n""Y pp(Xi. ;) + 2 Y mj| By, |2, (4.3)
i=1 =1

J

where pg(x,y) is a loss function which is convex in . Examples are pg(x,y) =
[y —xB|* or one of the loss functions described in Chapter 3 where pg(x,y) =
—logg(p(ylx)) with p(:|x) denoting the density of ¥ given X = x. We discuss in
Section 4.5.1 a different penalty which is invariant under reparametrization whereas
in (4.3), we only have invariance with respect to orthonormal reparametrizations
within each group ¢;. As in Chapter 3, we often include an unpenalized intercept
term: the estimator is then

(), B(A) = argmin 0y (u,B),
w.B

n q
0x(u,B)=n""Y pup(Xi,Y;) + 2 Y mjl|By 2. (4.4)
i=1 =1

J

In the sequel, we often focus on the notationally simpler case without intercept; in
practice the intercept term is often important but there is no conceptual difficulty in
including it (in an unpenalized way) as described in (4.4).

Lemma 4.1. Assume that pg(X;,Y;) > C > —oo for all B,X;,Y; (i=1,...,n) and
pp(x,y) is a convex function in B for all X;,Y; (i =1,...,n). Then, for 2 > 0 and
m; > 0 for all j, the minimum in the optimization problem (4.3) is attained.

Proof. Because Q) (f) is continuous and Q (8) — = as [|(By,, ..., Bg,)[2 — o, the
minimum is attained. O

The boundedness assumption in the lemma is very mild and holds for the commonly
used loss functions for (generalized) regression or classification. Furthermore, we
could replace the convexity assumption by requiring instead a continuous loss func-
tion (in f3).

The group Lasso estimator has the following properties. Depending on the value of
the regularization parameter A, the estimated coefficients within a group ¢; satisfy:

either (ﬁgj), = 0 for all components » =1,...,7; or (ﬁAgj), # 0 for all components
r=1,...,T;. This is a consequence of the non-differentiability of the /- function at
zero: an exact characterization of the solutions of the optimization problem in (4.3)
is given in Lemma 4.2 Furthermore, with trivial groups consisting of singletons
¢, ={j} forall j=1,...,g = p, and using m; = T; = 1, the penalty function in
(4.2) equals the standard Lasso penalty. Finally, the group Lasso penalty is invariant
under orthonormal transformations within the groups. Often we would choose any



58 4 The group Lasso

orthonormal basis for parametrization leading to orthonormal sub-matrices X%ng
for each group ¥; (Xg, denotes the n x T submatrix of X whose columns correspond
to ¢;). This has computational advantages (see Section 4.7.1.1) but one should keep
in mind that in principle, the estimator in general depends on the possibly non-
orthonormal parametrizations.

The group Lasso estimator has similar qualitative properties as the Lasso. It exhibits
good accuracy for prediction and parameter estimation, and it has the groupwise
variable screening property saying that all relevant groups with corresponding pa-
rameter vector @g = 0 are also estimated as active groups with corresponding pa-
rameter vector By # 0. We give more details in Section 4.4 and present rigorous
mathematical theory in Chapter 8.

4.3 Factor variables as covariates

As mentioned earlier at the beginning of Chapter 4, grouping of the parameter vec-
tor occurs naturally with factor variables. We consider here the simple case with just
two covariates X(1), X2 ¢ {0,1,2,3}, where {0, 1,2,3} denotes a set of four cate-
gorical labels, i.e., we consider two factors each having 4 levels. Consider a linear
model with real-valued response ¥ and dummy variables encoding the contribution
of the two factors:

3 3
Yi=u+ Y wx =0+ Y sd(x? =)
k=0 =0

3
+ Y el =k x? =0+ (i=1,...,n), 4.5)
k=0

where we assume sum-constraints Y, e =Y, & =0, Y, ki = Yo K¢ = 0 forall k, £,
1(+) denotes the indicator function and €y, ..., &, are i.i.d. variables with E[g;] = 0.
This model can be parametrized as

Y =XB +e, (4.6)

withY = (Y1,...,Y,), € = (€1,...,&,) and n x 16 design matrix X which ensures the
sum-constraints from above.

The parametrization in (4.6) can be achieved as follows. A first model matrix X can
be constructed which ensures the sum-constraints (by dropping the redundant pa-
rameters and keeping the non-redundant parameters in the model). For example, in
the R software environment for statistical computing, the functionmodel .matrix
provides such a first design matrix X (see also Problem 4.1). Next, we center all
columns of X to mean zero. This is appropriate whenever we do not want to penal-
ize the intercept term (thus, we project onto the space of variables which are not
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penalized). Afterward, we parametrize using orthonormal bases for the sub-spaces
corresponding to the two main effects (parametrized in (4.5) with y, 6) and to the
interaction effect (parametrized in (4.5) with k). As a result, we end up with a de-
sign matrix X as in (4.6) and we can apply the group Lasso for estimation of f3. It
is worth pointing out that the sum-constraint plays no special role here: other con-
straints such as Helmert contrasts can be parametrized with orthonormal bases for
the sub-spaces of the main effects and interactions. Since the group Lasso penalty is
invariant under ortl}onormal transformations of the parameter vector, the estimation
results (for Y = XJ3) are not affected by the choice of the contrast.

4.3.1 Prediction of splice sites in DNA sequences

Prediction of short DNA motifs plays an important role in many areas of computa-
tional biology. Gene finding algorithms such as GENIE (Burge and Karlin, 1997)
often rely on the prediction of splice sites. Splice sites are the regions between cod-
ing (exons) and non-coding (introns) DNA segments. The 5’ end of an intron is
called a donor splice site and the 3* end an acceptor splice site. A donor site whose
first two intron positions are the letters “GT” is called canonical, whereas an accep-
tor site is called canonical if the corresponding intron ends with “AG”. An overview
of the splicing process and of some models that are used for detecting splice sites
can be found in Burge (1998).

We analyze here the so-called MEMset Donor dataset. It consists of a training set of
8’415 true (encoded as Y = 1) and 179’438 false (encoded as ¥ = 0) human donor
sites. An additional test set contains 4’208 true and 89’717 false donor sites. The
covariates or predictor variables are 7 factors with values in {A,C,G,T}’, namely
3 bases from the exon and 4 bases from the intron part. The data are available at
http://genes.mit.edu/burgelab/maxent/ssdata/. A more detailed
description can be found in Yeo and Burge (2004).

We fit a logistic regression model using the group Lasso penalty for the main ef-
fects and higher-order interactions among the 7 factors X!, ... X7 For m(x) =
P[Y = 1|X = x], we model logit((x)) analogously as in (4.5), but now in the lo-
gistic setting with 7 factors. We use the sum-constraint as encoding scheme for the
dummy variables, i.e., the coefficients have to add up to zero. The entire predictor
space has dimension 47 = 16/384 but we restrict ourselves to interactions of at most
order 2 which are sometimes also called 3-way interactions. After reparametrization
with orthonormal bases for all groups ¢; corresponding to the sub-spaces from main
effects or interaction terms, we end up with a model

logit(m) = u+XpB

with n x 1155 design matrix X. We then use the group Lasso estimator
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A q
B(A)= arggnin (f(B;YI,...,Yn) +A) \/Ellﬁgjllz> , 4.7
=1

where the intercept p is unpenalized and 7; = |¥].

The original training dataset is used to build a smaller balanced training dataset
(5’610 true, 5’610 false donor sites) and an unbalanced validation set (2’805 true,
597804 false donor sites). All sites are chosen randomly without replacement such
that the two sets are disjoint. The additional test set (4’208 true and 89’717 false
donor sites) remains unchanged. Note that the ratios of true to false sites (i.e. ¥ = 1
or Y =0, respectively) are equal for the validation and the test set.

All models are fitted on the balanced training dataset. As the ratio of true to false
splice sites strongly differs from the training to the validation and the test set, the
intercept is corrected as follows (King and Zeng, 2001):

~ ~ )7 Tlyal
corr — _ 10 - +10 ( > ,
Ho u g(l—y) 4 [,

where 7, is the proportion of true sites in the validation set. The penalty parameter
A is chosen according to the (unpenalized) log-likelihood score on the validation set
using the corrected intercept estimate.

For a threshold 7 € (0,1) we assign observation i to class 1 if Tgeorr (xi) > 7 and
to class 0 otherwise. Note that the class assignment can also be constructed without
intercept correction by using a different threshold.

The correlation coefficient p; corresponding to a threshold 7 is defined as the Pear-
son correlation between the binary random variable of the true class membership
and the binary random variable of the predicted class membership. In Yeo and Burge
(2004) the maximal correlation coefficient

Pmax = max{pz |7 € (0,1)}

is used as a goodness of fit statistics on the test set.

The candidate model that was used for the Logistic group Lasso consists of all 3-way
and lower order interactions involving 64 terms resulting in p = 1156 parameters.
Such a group Lasso fitted model achieves P, = 0.6593 on the test set which is
very competitive with published results from Yeo and Burge (2004) whose best
Pmax €quals 0.6589 based on a maximum entropy approach.

In the spirit of the adaptive Lasso in Section 2.8 or the relaxed Lasso in 2.10, we
consider here also some two-stage procedures. Instead of an adaptive group ;-
penalization (see Section 4.6), we consider the following. The first stage is group
Lasso yielding a parameter vector f3(Ain;). Denote by S(Ainie) = {J; Bj(Ainit) # 0}
which is the set of variables from the selected groups. In the second stage, we either
use maximum likelihood estimation (group Lasso/MLE hybrid) or /,-penalization
(group Lasso/Ridge hybrid) on the reduced space given by the selected variables
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(from the selected groups) in $(Aiyi¢). The latter amounts to the following: when
splitting the parameter vector into the components (ﬁs( A ),ﬁsA( linat)”) where the es-

init

timator B(A'init) is non-zero and zero, respectively, we define:
. )(Ainita thybrid)

ﬁg(limt

= aﬁrgmin (=B ) Ot ) s+ Yo Ay B 3)
“S lllll

and for Ayypria = 0, we have the group Lasso/MLE hybrid. The penalty parameters

Ainic and lhybrid are again chosen according to the (unpenalized) log-likelihood score

on the validation set using the corrected intercept estimate.

In terms of predictive accuracy, there is no benefit when using such two-stage pro-
cedures. On the other hand, while the group Lasso solution has some active 3-way
interactions, the group Lasso/Ridge hybrid and the Group Lasso/MLE hybrid only
contain 2-way interactions. Figure 4.1 shows the ¢;-norms of each parameter group
for the three estimators. The 3-way interactions of the group Lasso solution seem to
be very weak, and the two-stage procedures select slightly fewer terms. Decreasing
the candidate model size at the beginning to only contain 2-way interactions gives
similar results which are not shown here.

In summary, the prediction performance of the group Lasso estimate in a simple
logistic regression factor model is competitive with a maximum entropy approach
that was used in Yeo and Burge (2004). Advantages of the group Lasso include
selection of terms corresponding to main effects and interactions, and the logistic
model is a natural framework to include other predictor variables.

4.4 Properties of the group Lasso for generalized linear models

Recall that we denote by f°(x) = xB° and fj (x) = xB(A) the linear predictor and
its estimate in a generalized linear model as in (3.1). Furthermore, we denote the set
of true underlying active groups by

group {] ﬁ’/ 7&0}7

with the understanding that ﬁ(g = 0 if there exists at least one component say k

where (Bw )k # 0. The cardinality of the set of active groups is so = |ngup|

For prediction, when choosing an appropriate regularization parameter A, the group
Lasso estimator is consistent in high-dimensional settings where p = p,, is of much
larger order than sample size n:

(B() =B Zx(B(2) ~ B°) = op(1) (n— =),
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Fig. 4.1 DNA splice site prediction. /»-norms Hﬂg}. ll2, j €{1,...,q} of the parameter groups with
respect to the groupwise orthonormalized design matrix when using a candidate model with all
3-way interactions. i : j : k denotes the 3-way interaction between the ith, jth and kth sequence
position. The same scheme applies to the 2-way interactions and the main effects. Active 3-way
interactions are additionally marked with vertical lines. The figure is taken from Meier et al. (2008).

where Ly is n~'X”X in case of a fixed design or equals the covariance of the co-
variate X in case of a random design. Thereby, the asymptotic framework is set-up
in an analogous way as in (2.6), and we implicitly assume here a mild condition on
the distribution of Y|X (e.g. sub-Gaussian distribution). Recall that the quantity on
the left-hand side can be interpreted as

for fixed design : n!

=

() = (%) = IX(B(A) = B 15/n,
i=1
(Knew) = £°Xnew))?] = E[{Xnew (B(A) — B*)}7],
where [E is with respect to the new test observation Xj,.,,. Under an additional com-

patibility assumption on the design matrix X, and using A < n~"/2(1Vv \/log(q)/T),
we obtain the convergence rate

~»

for random design : E[(

(B(A) —Bo) Zx (B(A) — Bo) = Op (,;;gaog@ v T)) . 48)
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Here, for simplicity, we assumed equal group-size T = |¢;| for all j =1,...,q,
where g and so denote the number of groups or active groups, respectively. Further-
more, ¢2 is a so-called compatibility constant, depending on the compatibility of
the design, which at best is bounded below by a positive constant. In addition to the
prediction error above, assuming a compatibility condition on the design matrix X,
the estimation error is

q
Z 1Ba; (2) = B |2 = log(q) v T) : (4.9)

50
o\ g
Mathematical details are given in Theorem 8.1 in Chapter 8.

When comparing the convergence rate in (4.8) with (2.8) for the Lasso (where for
the latter, the number ¢? is typically smaller than here), we see that we gain a log(p)-
factor if T is larger than log(g) (noting that so7 corresponds to the number of non-
zero regression coefficients). We also see from (4.8) that if the group-sizes are large,
say in the order of sample size n, the group Lasso is not consistent for prediction.
For such cases, we need additional assumptions such as smoothness to achieve con-
sistency of predictions. This is treated in greater detail in Chapters 5 and 8.

The variable screening property on the groupwise level, analogous to the description
in Section 2.5, also holds for the Group Lasso. As before, we denote by ngup
{Js ﬁgj 0} the set of groups whose corresponding coefficient vector is not equal
to the O-vector (i.e. at least one component is different from zero) and analogously,

S’gmup (1) is the estimated version using the group Lasso estimator. Then, for suitable

A = A, typically A, =< n~'/2(1V y/log(q)/T) (see Theorem 8.1):

P[Seroup(A) 2 S

Ooup] = 1 (11— o). (4.10)

Such a result follows from the convergence rate (4.9) for Z?z 1l ng (1) - ﬁ{%HZ
(Theorem 8.1) and assuming that the smallest non-zero group norm inf;{ ||ﬁ5%_ llos j €
ngup} is larger than a certain detection limit. More details are given in Theorem

8.1 in Chapter 8. Usually, when choosing Acy from cross-validation, the screening
property in (4.10) still holds, in analogy to the results from Section 2.5.1 for the
Lasso. The variable screening property on the groupwise level from (4.10) is very
useful to do effective dimensionality reduction while keeping the relevant groups in
the model. Typically, the number of groups |$'gmup| is much smaller than the total
number g of groups. Furthermore, if the group-sizes are relatively small, the total
number of parameters in §gr0up is often smaller than sample size n. As pointed out
above, if the group-sizes are large, additional smoothness assumptions still yield
statistically meaningful (or even optimal) results. This topic is treated in greater de-
tail in Chapters 5 and 8 (Sections 8.4 and 8.5). We emphasize that in addition to a
prediction gain when 7 > log(g) with the group Lasso in comparison to the Lasso,
it is worthwhile to use it since it encourages sparsity for whole groups, and cor-
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responding group selection may be desirable in practical applications, for example
when dealing with factor variables.

4.5 The generalized group Lasso penalty

The group Lasso penalty in (4.2) is

! q
),j;mj”ﬁ%“z:}»j;mj\/[%.

In some applications, we want a penalty of the form

q
. T Q.
A;mﬂ/ﬁ%A,&gj, (4.11)

where A; are positive definite 7; x T; matrices. A concrete example is an additive
model treated in more detail in Chapter 5.

Due to the fact that A; is positive definite, we can reparametrize:

N 1/2
ng :Aj/ ﬂgﬁ

and hence, an ordinary group Lasso penalty arises of the form
9 -
Ay mjl| B2
j=1

The matrix A}/ % can be derived using e.g. the Cholesky decomposition A; = RJTR f

for some quadratic matrix R; which we denote by A}/ :

need to reparametrize the (generalized) linear model part:

= R;. Of course, we also

q
X =Y Xy By,
j=1
The reparametrization is then for every sub-design matrix Xy :
S - 12 .
Xy, =Xg,R;' =Xy A7 j=1,....

such that Xf3 = ):?:1 Xf;j ng-

The generalized group Lasso estimator in a linear model is then defined by:
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A . d
p = gmin (YXMl%/nHj;mJ\/W) -

Equivalently, we have:

PN

—1/25
ﬁdj :AJ / ﬁg]w

. g a
B = argmin (HY— Z,lefjﬁ%,\lé/nﬂl Zlijﬁg,—Hz) :
J= J=

p

4.5.1 Groupwise prediction penalty and parametrization invariance

The Lasso and group Lasso estimator depend on the parametrization used in a linear
or generalized linear model. The estimated active set S or Sgroup, respectively and

the estimated linear predictor f (x) = xﬁ depend on the parametrization (e.g. on the
choice of basis functions).

In the setting where the group sizes are not too large, we can use the following
penalty:

q q
AY milXg By lla=2Y m;
j=1 j=1

TxT
ﬁgj ng X(g/ ﬁ%l

which is a generalized group Lasso penalty if X(g Xy, is positive definite for every

J (we throughout require that the group sizes 7 are smaller than sample size n).
We call this the groupwise prediction penalty since we penalize the norms of the
linear predictors Xy, ﬁgj. Trivially, the penalty is invariant under reparametrization

within every group ¥, i.e., we can use ~,/ =B -sz where B; is any invertible
T; x T; matrix. Therefore, using such a groupw1se predlctlon penalty in a generalized
hnear model we have the property that the estimated set of active groups and the
predictions are invariant under any one-to-one reparametrization within the groups.
That is, for Bg//j = BBy, with any invertible B;’s:

and if B;j0 = 0 for all j, then also

§group = {]’ ng #0} - {]’ ﬁ% 7é0}

This invariance is a nice property suggesting to use the groupwise prediction penalty
more often than what is common practice.
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4.6 The adaptive group Lasso

The idea of the adaptive Lasso in Section 2.8 can also be applied to the generalized
group Lasso. As a starting point, we assume to have an initial estimator Binit. Ide-
ally, it is tailored for the structure with groups ¢, ...,%, as in (4.1) so that we have
sparsity in the sense that a whole sub-vector estimate Binit’g,/j is zero or all compo-
nents thereof are non-zero. A natural candidate for an initial estimator is the Group
Lasso estimate in (4.7) or the generalized group Lasso estimate with the penalty
in (4.11). From a practical perspective, we would tune the regularization parameter
for the initial estimator according to prediction optimality using a cross-validation
scheme. Thereby, we would measure prediction accuracy with the squared error loss
for linear models or negative log-likelihood loss for generalized linear models.

The adaptive group Lasso is then defined with the following re-weighted penalty.
Instead of (4.2), we take

X f Bg 2
Hﬁlmt J,HZ

In terms of computation, we can simply re-scale the covariates in a linear or gener-
alized linear model:

XU =x0) Hﬁinit,‘fruz if j€%,.

Then, Z B! 1[3] 7 with
3 Bj
Bi=—"l—ifje,
”ﬁlnlt%”Z
to achieve that
Bl

q ~
=2 Y, mjlBy,>-

Hﬁlmt //”2 j=1

L
Hence, we can use the same program to compute the adaptive group Lasso as for

the plain non-adaptive case (omitting all the groups with 4, with 3init.gj =0).

Obviously, we can also use an adaptive generalized group Lasso. Instead of (4.11)

WeE use
Y i A/ BgTjAjﬁgj

Biivg,A B,

Regarding computation, we can rewrite this with rescaled matrices of the form
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- 1 .
AjZCjAj, Cj= W, J= 1,...,q.

inic A Pinic 9

Thereby, if ¢; = oo, we omit the variables from group ¥;.

The adaptive group Lasso is primarily recommended to be used for better selection
of groups of variables. The heuristics and motivation are the same as for the adaptive
Lasso described in Section 2.8. Moreover, when using the group Lasso as initial
estimator, the adaptive group Lasso is always at least as sparse in terms of non-zero
coefficients (and number of groups with non-zero coefficients). This is desirable if
the underlying true structure is indeed very sparse with a few strong signals, and we
then would get better prediction results as well.

4.7 Algorithms for the group Lasso

The group Lasso estimator ﬁ(l) in (4.3) is given by minimizing the convex objec-
tive function

n q
0:(B)=n""Y pp(X:. ;) + 1 Y m;|| By, |2, (4.12)
i=1 =1

J

where pg(X;,Y;) is a loss function which is convex in 8. For the squared error loss,
we consider

pp(x,y) =y—xB*, (yER, x€RP),

and for the logistic loss in a binary classification problem we have (see formula (3.4)
in Chapter 3),

Pp(x,y) = —yfp(x) +log(1 +exp(fp(x)), (y€{0,1}, xeRP),

In both these examples, the loss functions are of the form pg(x,y) = p(fp(x),y) as
a composition of a linear function in 8 and a convex function f — p(f,y) in f for
all y. This class of loss functions, covering the case of generalized linear models, is
considered in Chapter 6 using the notation p s

We denote in the sequel the empirical risk by

pB)=n""Y ps(X. 1y,
i=1

1

The penalized version then decomposes as
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01(B) = p(B)+ 2 Y., mjl1Bs I
=1

As a consequence of the Karush-Kuhn-Tucker (KKT) conditions (Bertsekas, 1995)
we have the following result which generalizes the first statements in Lemma 2.1
from Section 2.5.

Lemma 4.2. Assume that p() is differentiable and convex. Then, a necessary and
sufficient condition for B to be a solution of (4.12) is

~

Vp(ﬁ)gj +A ”5; H fﬁw # 0 (i.e. not equal to the 0-vector),
2

||VP(B)%||2 < Am; zfﬁgj =0,
where Vp(B) denotes the gradient vector of p(B) evaluated at B.

Proof. If ﬁgj # 0, the criterion function Q, () is partially differentiable with respect
to ﬁgj and it is necessary and sufficient that these partial derivatives are zero (there
are no local minima due to convexity): this is the first equation in the characteriza-
tion. If ng = 0, the criterion function Q, (+) is not differentiable but we can invoke
subdifferential calculus (Bertsekas, 1995). The subdifferential of Q; () with respect
to Py, is the set

905 (B)g; ={Vp(B)y, +Ae: e € E(By,)},

if By, # 0 and [le|[2 < m; if By, =0},
(4.13)

| By,
= e Tiie=m;
EBg)=tecRE e=mp 1

see Problem 4.2. Note that the latter case with ng = 0 is of special interest here:
then, e is any vector within the ball having Euclidean radius m;. Finally, a standard

result from subdifferential calculus says that the parameter vector [3% minimizes
0,.(B)g; if and only if 0 € dQ;, (/3) (Bertsekas, 1995), see also Problem 4.2, which

is equlvalent to the first and second statement in the characterization (the subdiffer-
ential 8Q;L([3) consists of all block components 8Q;L(ﬁ),j (j=1,...,9). a

4.7.1 Block coordinate descent

For the squared error loss, we can proceed in a simple way using a block coordinate
descent algorithm, also known as Gauss-Seidel type method, as proposed by Yuan
and Lin (2006). The idea of block coordinate descent is more general, however, and
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we can use it also for other loss functions pg(-,-), as in formula (4.12), which are
convex and differentiable with respect to f3.

We cycle through the groups (blocks) j=1,...,¢4,1,...,¢,1,... and in every of these
cycling steps, we optimize the objective function with respect to the corresponding
group (block) ¢; while keeping all but the current parameters corresponding to a
group fixed. This leads us to the computation presented in Algorithm 2, where we
denote by [3_% the vector B whose components in &; are set to zero:

Bah= {0 2T (4.14)

Similarly, Xy, denotes the n x T; matrix consisting of the columns of the design ma-
trix X corresponding to the predictors from the group ¢;. For notational simplicity,
we drop in the following the hat-notation for 3.

Algorithm 2 Block Coordinate Descent Algorithm

1: Let B1% € R” be an initial parameter vector. Set m = 0.

2: repeat

3: Increase m by one: m <— m—+ 1.
Denote by " the index cycling through the block coordinates {1,...,q9}:
Pl — glm=1] + 1 mod ¢. Abbreviate by j = .7 the value of .7".

4 (- wL Dy ll2 < Amj : set B <o,

. m—1]
otherwise: [3{ = argmin Q; (B+ ),
g .

J

where BL’ZQ_I] is defined in (4.14) and Bk’; is the parameter vector which equals "1

J J

except for the components corresponding to group %; whose entries are equal to ng (i.e.

the argument we minimize over).
5: until numerical convergence

In Step 4 of Algorithm 2, the ¢>-norm of the negative gradient and the corresponding
inequality look as follows for the squared error and logistic loss, respectively (see
Problem 4.3): denoting by j = .&",

||2n’lX,% (Y-B',, 1] )||2 < Amj for the squared error loss,  (4.15)
||n71X§J (Y- nﬁ )||2 < Am; for the logistic loss, (4.16)

J
where for the latter, (7); = Pg[V; = 1|X].

Step 4 is an explicit check whether the minimum is at the non-differentiable point
with ﬁgj = 0. If not, we can use a standard numerical minimizer, e.g., a gradient-type
algorithm, to find the optimal solution with respect to ng.
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4.7.1.1 Squared error loss

In case of squared error loss, the block-update in Step 4 in Algorithm 2 is explicit if
n’lXéj Xy, = Ir;. Note that this assumption is quite harmless since the penalty term
is invariant under orthonormal transformations, that is, it does not matter how we
proceed to orthonormalize the design sub-matrices corresponding to the different
groups; see also the short discussion at the end of Section 4.2.1 and Section 4.5.1. It

then holds that the minimizer in Step 4 is as follows: denoting by j = .% ],
if (Vo (B, "), 12 = 112X, (Y = XB", )l|2 > Am; :
B = ammincu (81 )= 1 G
Uy, =2n""X}, (Y — Xﬁﬁ”;;”). (4.17)
In short, the entire up-date is
B = 0~ [,

where (x);+ = max(x,0). Thus, the block coordinate descent algorithm amounts to
some form of iterative thresholding. See Problem 4.4.

4.7.1.2 Active set strategy

For sparse problems with a large number of groups ¢ but only few of them being
active, an active set strategy can speed up the algorithm considerably. An active set
is here defined as the set of groups whose coefficient vector is non-zero. .

When cycling through the coordinate blocks (or groups), we restrict ourselves to
the current active set and visit only “rarely” the remaining blocks (or groups), e.g.,
every 10th iteration, to up-date the active set. This is especially useful for very high-
dimensional settings and it easily allows for p ~ 10* — 10°. For the high-dimensional
example in Section 4.3.1, this modification decreases the computation time by about
40% (the example uses the logistic loss whose block up-dates are not explicit, as
discussed below).

4.7.1.3 General convex loss

In case of other than squared error loss, we need to do numerical optimization for
a block up-date in Step 4 in Algorithm 2. Then, the value of the last iteration can
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be used as starting value to save computing time. If the group was not active in the
last iteration (e.g. B%’*l] = 0 for group j) we first go a small step in the opposite
direction of the gradient of the negative log-likelihood function to ensure that we
start at a differentiable point. We will discuss later that full groupwise optimization
in Step 4 is not necessary and an approximate minimization will be sufficient, as
discussed in detail in Section 4.7.2.

We show now that the block gradient descent algorithm converges to a global opti-
mum, a result which generalizes Proposition 2.1 from Section 2.12.1. The arguments
are completely analogous to the derivation of this proposition. We discuss first that
the block up-dates are well-defined. Consider the function

h=hp,e o By, Qa({Bg; By ) F=1,....),

(where we use a slight abuse of notation with the ordering of coordinates in the ar-
gument of the function Qy(-)). That is, 2(By,) describes the function Q; () as a
function of By, for fixed ng,, where we denote by ¥¢ ={1,...,p}\ 9. Note that
h(By,) is just a different notation for Q5 (B1«,) in Step 4 from Algorithm 2. We
observe that if 0y (B) is convex in f3, then also (fBy,) = hg C(ﬁgj) is convex in

&/p , for all ﬁgc See Problem 4.5. Using the same argument as in the short proof

of Lemma 4. 1 the groupwise minima are attained. In a next step, one needs to
show that Step 4 of Algorithm 2 minimizes the convex function h(By;) = hg,. (By;)
7

with respect to fy, (j =% Y. Analogously as in Section 2.12.1, since h(By,) is
not differentiable everywhere, we invoke subdifferential calculus(Bertsekas, 1995).
Here, the subdifferential of h( ) is the set dh(By;) ={Vp(B)y, +Ae; e € E(By;)},

E(By,) ={e€ R7; e :mim if By, # 0 and ||e[|> < m; if By, = O}. The param-
“J

eter vector ffy; minimizes h(ﬁ(g]) if and only if 0 € dh(fy,), and this leads to the
formulation in Step 4. Finally, as a Gauss-Seidel algorithm which cycles through
the coordinates .71 = 1,...,q,1,... (m=1,2,...), one can establish numerical
convergence to a stationary point. The mathematical details are not entirely trivial.
One can exploit the fact that the penalty term is block-separable! and then make use
of a general theory from Tseng (2001) for numerical convergence of Gauss-Seidel
type algorithms (conditions (A1), (B1) - (B3) and (C2) from Tseng (2001) hold; this
then implies that every cluster point of the sequence /3[’”] bm>0 is a stationary point
of the convex function 0, (-) and hence a minimum point).

We summarize the derivation by the following result.

Proposition 4.1. For the quantities in formula (4.12), assume that the loss function
satisfies pg(Xi,Y;) > C > —oo for all B,X;,Y; (i = 1,...n), it is continuously differ-
entiable with respect to B, and that Q) (-) is convex. Then, Step 4 of the block coor-

! A function f(f) is called block separable (into convex functions) with blocks 4,...,%, if f(B) =
Y, fi(Bg;) with convex functions f;(-).
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dinate descent Algorithm 2 performs groupwise minimizations of Q,.(+) (i.e. of the
functions hﬁgc (+)) and is well defined in the sense that the corresponding minima are
J

attained. Furthermore, if we denote by ] the parameter vector from Algorithm 2
after m iterations, then every cluster point of the sequence {3 [m] Ym>0 is a minimum

point of 0(").

As pointed out earlier, the boundedness assumption for the loss function holds for
the commonly used loss functlons in (generalized) regression and classification. Fur-
thermore, the iterates B ") can be shown to stay in a compact set (because of the
penalty term) and thus, the existence of a cluster point is guaranteed.

The main drawback of such a block gradient descent Algorithm 2 is for cases other
than squared error loss where the blockwise minimizations of the active groups in
Step 4 have to be performed numerically. However, for small and moderate sized
problems in the dimension p and group sizes 7}, this turns out to be sufficiently
fast. Improvements in computational efficiency are possible by replacing an exact
groupwise minimization in Step 4 with a suitable approximation whose computation
is explicit. This will be discussed next.

4.7.2 Block coordinate gradient descent

As described in (4.17), the blockwise up-dates are available in closed form for
squared error loss. For other loss functions, the idea is to use a quadratic approxi-
mation which then allows for some rather explicit blockwise up-dates. More tech-
nically, the key idea is to combine a quadratic approximation of the empirical loss
with an additional line search. In fact, this then equals the block coordinate gradient
descent method from Tseng and Yun (2009). The description here closely follows
Meier et al. (2008).

Using a second order Taylor expansion at 3 ™| the estimate in the mth iteration, and
replacing the Hessian of the empirical risk p(f3) by a suitable matrix H ] we define

m m m 1 m / m
Adkﬁzmmb+fvmmU+§fm%ux;mﬁ@}m%h
=

~ 0, (B +d), (4.18)

where d € R”.

Now we consider minimization of M )[Lm] (+) with respect to the jth parameter group.
This means that we restrict ourselves to vectors d with di = 0 for k ¢ &;. Moreover,

we assume that the corresponding 7; x 7j submatrix Hf[;jl}%j is of the form H{[g ](f =

[m]

hg"] -ITj for some scalar i i € R; more discussion about the choice of the matrix H [m]
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is given below in formula (4.22). If || Vp (S m]) hg.m] [3([2] |l < Amj, the minimizer

of M )[Lm]( d) in (4.18) with respect to the components in group ¥; is
al’ = - (4.19)

see Problem 4.6. Note that this is similar to Lemma 4.2, due to the KKT con-
ditions, where we also examine the absolute value of the gradient, and here, the

non-differentiable point is at d([g = - ng Otherwise, the minimizer of (4.18) with
respect to the components in ¢; is (Problem 4.6)

[m] p[m]
- 1 Vp(B")g, —hy ﬁw
dy! =~ 3 Vp(BI™)g, — Am; d m’ = (4.20)
T hy IVp(BlIm)y, — ( [3 ll2

If dg[;'; ] # 0, an inexact line search using the Armijo rule has to be performed for
up-dating the parameter vector.

[m]

Armijo Rule: Let o, be the largest value among the grid-points {08!} 150 such

that

01 (B" + )" dy") — 01 (B!™) < o A", @21)

where 0 < § < 1,0 < 6 < 1, 0 > 0, and A"/ is the improvement in the objective
function Q@ (-) when using a linear approximation for the objective function, i.e.,

A = (dg)'Vp ("), + Amj 1By +dg 2~ Am; B 2

When writing 8 ] 4 aj[m] dg:} , we implicitly mean that only the block of parameters

corresponding to the group ¢, are affected by the summation. We remark that A ] <
0 for ds[;:-l ] # 0, as shown in Tseng and Yun (2009).

Finally, we define
ﬁ[erl] _ B[m] _|_a[m]d([;n],

where only the block or parameters corresponding to the group ¥; is up-dated (j
denotes the index of the block component in iteration m+1). A summary is outlined
in Algorithm 3. Standard choices for the tuning parameters are for example o = 1,
0 =0.5, 0 =0.1 (Bertsekas, 1995; Tseng and Yun, 2009). Other definitions of A [m]
as for example to include the quadratic part of the improvement are also possible. We
refer the reader to Tseng and Yun (2009) for more details and the fact that the line
search can always be performed. It is worth pointing out that the block up-dates are
fairly explicit. However, in comparison to the block coordinate descent Algorithm 2
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for the squared error loss, we need to implement an additional line search using the
Armijo rule as in (4.21).

For a general matrix H ™| the minimization with respect to the jth parameter group

depends on H [m] only through the corresponding submatrix H([Jf';,]%,—' To ensure a rea-
sonable quadratic approximation in (4.18), H{L/T}{gj is ideally chosen to be close to
the corresponding submatrix of the Hessian of the empirical risk function. However,
there is a trade-off between accuracy of the quadratic approximation and computa-
tional efficiency. The latter is the reason to restrict ourselves to matrices of the form

H}%ﬂ% = hEm] -Ir;, and a possible choice is (Tseng and Yun, 2009)

hB.m] = min (max {diag {Vzp(ﬁ[m])gj7gj} , Cmin} ,Cmax) ) (4.22)

where 0 < ¢pin < ¢max < oo are bounds (e.g. cpin = 107° and ¢max = 10%) to ensure
convergence (see Proposition 4.2). The matrix H [ does not necessarily have to
be recomputed in each iteration. Under some mild conditions on H il (which are
satisfied for the choice in (4.22)), convergence of the algorithm is assured and we
refer for the details to Tseng and Yun (2009).

When minimizing M )[Lm] () with respch to a group showin'g up in' the penglty term,
we first have to check whether the minimum is at a non-differentiable point as out-
lined above. For an unpenalized intercept By, this is not necessary and the solution
can be directly computed:

1
VP (B,

[m] _
P /(G R
0 h([)m

Algorithm 3 Block Coordinate Gradient Descent Algorithm

1: Let Bl € R” be an initial parameter vector. Set m = 0.

2: repeat

3:  Increase m by one: m <— m+ 1.
Denote by .7 ["] the index cycling through the block coordinates {1,...,q}:
I — =1 1 1 mod ¢. Abbreviate by j =.7["] the value of .7["].

4: H},ﬁ_’/?;gj‘] =n" g = hy(B ) Iy, as in (4.22),

J

dg;';*” =(d" Vg, dmV = argmin M) (d) with M}" () as in (4.18),
: d: dg, =0 (k%))
ity " #0:
aj[-mfl] < line search,

-1 m=1]  ;[m—1]
Bl plm=1l + o -dgj ,
5: until numerical convergence
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Proposition 4.2. Assume that the loss function pg(X;,Y;) > C > —oo for all §,X;,Y;
(i=1,...,n), it is continuously differentiable with respect to B, and that the em-
pirical risk p(f) is convex. Denote by ﬁ[’"] the parameter vector from the block
coordinate gradient descent Algorithm 3 after m iterations. If Hg,f;' }% is chosen ac-

cording to (4.22), then every cluster point of the sequence {ﬁ[m] Ym>0 is a minimum

point of O, (+).

This result is a consequence of a more general theory on the coordinate gradient
descent method, see Tseng and Yun (2009, Theorem 1(e), Section 4). Linking this
theory to the case of the group Lasso is rigorously described in Meier et al. (2008,
Proposition 2). We remark that the block coordinate gradient descent Algorithm
3 can be applied to the group Lasso in any generalized linear model where the
response Y has a distribution from the exponential family.

To calculate the solutions ﬁ(l) for various penalty parameters from a grid A = {0 <
Agrid,1 < Agria2 < Agrid,q } We can for example start at

1
/,Lgrid.,g = Amax = ]er{rll,ax,q} mij Ve (ﬁ)%LBEOHZa

where all parameters in all the groups are equal to zero. We then use B(Agrid,k) as
a starting value for B()Lgridyk,l) and proceed iteratively until 3(7Lgrid71) with Agrid 1
close or equal to zero. Instead of up-dating the approximation of the Hessian H "/
in each iteration, we can use a constant matrix based on the previous parameter
estimates ﬁflgri o fo save computing time, i.e.,

m N
Héj}gj =h;(p (a'grid.k))ITj»
for the estimation of Blgri 1z, (and this matrix does not depend on iterations m). A

cross-validation scheme can then be used for choosing the parameter A among the
candidate values from the grid A.

Problems

4.1. Factor variables

Consider a linear model with 3 factor variables, each of them having 4 categorical
levels. Construct the design matrix, denoted in Section 4.3 as X, for the case when
considering main effects and first-order interactions only and requiring that the sum
of the effects (for each main and each first-order effect) equals zero (sum to zero
constraints). You may want to use the R statistical software using the command
model.matrix.
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4.2. Subdifferential and Subgradient
Consider a convex function

f:RP =5 R,
A vector d € R? is called a subgradient of f at point x € R? if

fO) > fx)+(y—x)"d.

The set of all subgradients of the convex function f at x € R” is called the subdiffer-
ential of f at x, denoted by d f(x). A necessary and sufficient condition for x € R?
to be a minimum of f is: 0 € df(x), see p. 736 in Bertsekas (1995).

Verify that the expression E (g, ) in (4.13) is the subdifferential of m || By, |2 at By,
Therefore, dQ; (B) in (4.13) is the subdifferential of Q, at f3.

4.3. For the block coordinate up-dates, derive the expressions in (4.15) and (4.16).
4.4. Derive the up-date formula in (4.17).

4.5. Convexity of block coordinate functions (Step 4 of Algorithm 2)
Assume that

g():R*? =R
B = (Bi,B2) — g(B)

is a convex function in 8 = (B, B2) € R?. Show that

hp () R—R
Bi = hg,(B1) = g(B1,B2)

is a convex function in By, for all fixed values of f3,.

4.6. For the block coordinate gradient descent Algorithm 3, derive formulae (4.19)
and (4.20) by using the KKT conditions as in Lemma 4.2. First, work out the case
where the group-size |¥;| = 1.

4.7. Group Lasso for logistic regression

Consider a binary response variable ¥ and logistic regression as in Section 3.3.1
from Chapter 3. We focus on the group Lasso with loss function given by the nega-
tive log-likelihood as in (3.3). Write the block coordinate gradient descent algorithm
(Algorithm 3 in this chapter) with explicit formulae for (4.20) and (4.22).



Chapter 5

Additive models and many smooth univariate
functions

Abstract Additive models build a nonparametric extension of linear models and as
such, they exhibit a substantial degree of flexibility. While the most important effects
may still be detected by a linear model, substantial improvements are potentially
possible by using the more flexible additive model class. At first sight, it seems
very ambitious to fit additive models with high-dimensional covariates but sparsity
implies feasible computations and good statistical properties. Besides encouraging
sparsity, it is important to control smoothness as well. This can be achieved by a
sparsity-smoothness penalty function. The combination of sparsity and smoothness
is crucial for mathematical theory as well as for better performance on data. We
discuss in this chapter methodology and computational aspects which are related to
the group Lasso presented in Chapter 4.

5.1 Organization of the chapter

We consider in Section 5.2 the framework using basis expansions for every addi-
tive function. Section 5.3 presents the idea of combining sparsity and smoothness
in a penalty term and it also describes an algorithm for computation. The penalty
described there is the one which has clearer mathematical properties. An alternative
penalty of group Lasso type is presented in Section 5.4: it is a bit easier to use since
the corresponding optimization algorithm is very efficient. However, the drawback
of such a group Lasso type penalty is its potential sub-optimality in terms of statis-
tical accuracy. Other alternative penalties are discussed in this section as well. We
then present some numerical examples in Section 5.5. In Section 5.6 we loosely de-
scribe statistical properties which are useful to know for justifying the methodology
and some practical steps. A mathematically rigorous treatment is given in Section
8.4 in Chapter 8. Generalized additive models are treated in Section 5.7. We also

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 77
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 5,
© Springer-Verlag Berlin Heidelberg 2011
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consider two related models: varying coefficient models are discussed in Section
5.8 and Section 5.9 considers multivariate and multitask models.

5.2 Introduction and preliminaries

Additive and generalized additive models are perhaps the first extension from linear
to nonlinear (generalized) regression functions. The model class became very pop-
ular in the low-dimensional p < n setting and the concepts and methodology have
been well established, see for example Hastie and Tibshirani (1990).

We will show here that fitting additive models for high-dimensional covariates is
quite easily possible and hence, flexible additive models should be a standard tool
for high-dimensional generalized regression. Besides encouraging sparsity, it is im-
portant to control smoothness of the function estimates as well. This can be achieved
by a sparsity-smoothness penalty function. The combination of sparsity and smooth-
ness is crucial for mathematical theory as well as for better performance on data.
One version of a sparsity-smoothness penalty function (see Section 5.4) amounts to
an optimization with a generalized group Lasso penalty introduced in Section 4.5.

5.2.1 Penalized maximum likelihood for additive models

We consider high-dimensional additive regression models with a continuous re-
sponse Y € R and p covariates X M, ...,XP) € R connected through the model

14 .
Yi=u+ Y fx) e, i=1,...,n, .1)
=1

where [ is the intercept term, &; are i.i.d. random variables, independent of {X;; i =
1,...,n}, with E[g] = 0, and f; are smooth univariate functions. For identification
purposes we assume that all f; are centered, i.e.

for j =1,...,p. The design points X; are allowed to be either fixed or random.
If the model is correct, we denote by fJQ(-) the true underlying additive functions.
With some slight abuse of notation we also denote by f; the n-dimensional vector

(fj(Xl(j)), . ,f,~(x,£j>))T. For a vector f € R" we denote by || f||2 = f7 f/n.

The basic idea is to expand each function f;(-)
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K

i)=Y Bixhjx(-) (5.2)
k=1

using basis functions hjx(-) (k= 1,...,K) and estimate the unknown parameter
vector B by penalized least squares:

A . p
B = arggmnl\Y— Y HjBjl[3/n+pen(B),
=1

where for j=1,...,p, H; is an n x K matrix defined by
(Hp)ix =hixX7), =1, k=1,... K,

Bi=Bj1,-,Bix)T. B=(Bi,...,B,) and Y = (Y1,...,Y,)". The exact form of
suitable penalty functions will be discussed below. If Y is centered, we can omit
an unpenalized intercept term and the nature of the objective function automatically
forces the function estimates fi,.. ., fp to be centered. In other words, the estimate
for i in model (5.1) equals i =n~' Y7, ¥;.

Typically, if p is large, we aim for a solution which is sparse in terms of whole K x 1
parameter vectors 8; = {Bx; k= 1,...,K}. This could be achieved with a group
Lasso penalty of the form 4 Zle || B;jl|2. We rather prefer here (a scaled version of)
the prediction group Lasso penalty from Section 4.5.1

P P
AY H;Bjll2/ V=2 Y (Il (5.3)
j=1 Jj=1

However, the penalty in (5.3) does not include any aspect of smoothness of the func-
tions f;(-). This could be addressed implicitly by a careful choice of the number K
of basis functions. It is often better though to include smoothness into the penalty
function. This then allows to use a large number of basis functions for every func-
tion f;(-), which is necessary to capture some functions at high complexity, and an
additional penalty term can then be used for appropriate regularization with respect
to smoothness.

5.3 The sparsity-smoothness penalty

In order to construct an estimator which encourages sparsity at the function level,
the norms || fj||, (j = 1,...,p) should be penalized, see formula (5.3). As men-
tioned above, this alone is often not sufficient and we want additional control of the
smoothness of the estimated functions.

We translate the smoothness of the functions f; in terms of some quadratic norm.
An important example is the Sobolev space of continuously differentiable functions
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with the squared Sobolev semi-norm I*(f;) = || f; (x)|>dx assumed to be finite.
Then, using the basis expansion in (5.2) we obtain

() = [ 15 @)Pdx=BWiB,
with W; a given K x K matrix of weights
(Wi)er = /h;k(x)h;’é(x)dx, k=1, K.
In Chapter 8, we write W; = BJT-B ;- More generally, we use

P(fj) = B/ W;B; = |IB;B;l3

as a measure of squared smoothness of the function f; using essentially any kind of
K x K smoothing matrices W; = BJTB i, see e.g. Section 5.3.1 below.

In order to get sparse and sufficiently smooth function estimates, we consider the
sparsity-smoothness penalty

P 14
peny, 2, (B) = A1 Y. I filln+22 ) 1(f;)
j=1 j=1

P p
= Y IHB o/ Vi + A Y. \/BTWB;. (5.4)
=1 =1

The two tuning parameters A;, A, > 0 control the amount of penalization. It is im-
portant to have two tuning parameters since the penalization for sparsity and of
smoothness live on very different scales. The theory in Section 8.4 assumes that

/llelz

Having chosen basis functions as in (5.2), the additive model estimator is defined
by the following penalized least squares problem:

N 14 )4 p
B(M, o) = arg;ninHY— Y HiBi|[2/n+ 2 Y H B2/ v+ 22 Y /BTW;B;,
j=1 j=1 j=1
(5.5)
Where ﬁ = (ﬁl,...,ﬁp)T and Bj = (ﬁj,la~~-aﬁj,K)T~

5.3.1 Orthogonal basis and diagonal smoothing matrices

We consider now the case where the basis functions /; (-) are orthogonal with
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14T .
and with diagonal smoothing matrices (diagonalized smoothness)

W; = diag(d?,...,d%) (j=1,...,p),
dp = k",

where m > 1/2 is a chosen degree of smoothing. Most often, we assume m = 2.
Since there is no dependence on j, we write

D? = diag(d},...,d%), d = k™.

Then, the sparsity-smoothness penalty in (5.4) becomes

)4 )4
peny, 2,(B) =21 Y. [IBjll2+22 Y. IDB;ll2,
j=1 j=1

where ||DB;|l2 = /XK, k2m /3]2 «» and the additive model estimator is defined by

R 4 4
ﬁ(?tl,lz):argﬁminHY—ZHijH;/n—FM 1812+ A2
=1 =1

j= j

p
|DB;2. (5.6)
Jj =1

J

A concrete example for an orthonormal basis is given by orthogonal polynomials.
(Roughly speaking, the functions /;(-) and values dj can be thought as eigenfunc-
tions and eigenvalues of the space of functions with m derivatives). Clearly, the
sparsity penalty A Zi'):l |B;ll> remains invariant under orthonormal transformation
of the basis. However, the smoothness penalty A, Zl;zl ||DB;]|> depends on the type
of orthonormal basis which is used.

5.3.2 Natural cubic splines and Sobolev spaces

We consider here additive functions f; belonging to the Sobolev space of con-
tinuously differentiable functions on [a,b] with squared smoothness semi-norms
P(f) =[P |f; (x)|?dx. Using the penalty in (5.4) in terms of functions f;, the ad-
ditive model estimator can be written as a penalized least squares problem over the
Sobolev class of functions:

. . p p p
Fireisfp=argmin |[Y=Y FI2+M Y Il +2 Y1), G
fronfp€EF j=1 j=1 j=1

where .7 is the Sobolev class of functions on [a,b]. Note that as before, we assume
the same level of regularity for each function f;.
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Proposition 5.1. Ler a,b € R such that a < min,-J{Xi(j)} and b > max,-ﬁj{Xi(j)}.
Let % be the Sobolev space of functions that are continuously differentiable on
[a,b] with square integrable second derivatives, and assume that there exist min-
imizers fj € % of (5.7). Then the fj ’s are natural cubic splines with knots at

xVi=1,..n

Proof. Because of the additive structure of f and the penalty, it suffices to analyze
each component f;, j = 1,..., p independently. Let f1,..., f, be a solution of (5.7)

and assume that some or all f; are not natural cubic splines with knots at Xi<’ ), i=
1,...,n. By Theorem 2.2 in Green and Silverman (1994) we can construct natural

cubic splines g; with knots at Xim7 i=1,...,nsuch that

gj (Xi<j) ) = fj (Xi(j))

fori=1,...,nand j=1,...,p. Hence
Zoo2 LY
=Y al= - LA
Jj= Jj=

and
185117 = 17
But by Theorem 2.3 in Green and Silverman (1994), 1?(g;) < I*(f;). Therefore,

the value in the objective function (5.7) can be decreased. Hence, the minimizer of
(5.7) must lie in the space of natural cubic splines. O

Due to Proposition 5.1, we can restrict ourselves to the finite dimensional space
of natural cubic splines instead of considering the infinite dimensional space of
continuously differentiable functions with square integrable second derivatives.

5.3.3 Computation

The optimization problem in (5.5) is convex in the pK x 1-dimensional parameter
vector B = (Bi,...,B,)". For large p and K (the latter depending on n such as
K = \/n or even larger), the optimization is very high-dimensional and efficient
algorithms are desirable. In principle, many convex optimization algorithms could
be used including interior point methods or second-order cone programming. The
problem in (5.5) is of the form

argﬁmin(g(ﬁ) +pen(B)),

with continuously differentiable function g(-) and a penalty function pen(-) which is
convex and separable with respect to the parameter blocks f,. .., 8,. Hence, a sim-
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ple block coordinate descent (Gauss-Seidel) algorithm can be used, similarly as the
block coordinate descent Algorithm 2 from Chapter 4, having provable numerical
convergence properties in the sense that every cluster point of the iteration sequence
is a stationary and hence a minimum point of the convex objective function. This
follows from a more general theory in Tseng (2001).

The optimization problem becomes easier when considering orthogonal basis func-
tions and diagonalized smoothing matrices, as used in the estimator defined in (5.6).
Then, an adaptation of Algorithm 2 in Section 4.7.1 can be used. However, the block
coordinate descent algorithm for the problem in (5.6) is a bit more complex. In par-
ticular, despite the squared error loss we are dealing with, the block up-date for
non-zero parameters is not explicit.

From the Karush-Kuhn-Tucker (KKT) conditions we have that a necessary and suf-
ficient condition for the solution is:

—2HT (Y ~HPj)+ Miej+MaDi; =0 if f; =0,
for vectors e, t; with [lej|l» < 1, [|£j]]2 < 1,
5 Jery
1 Pl + A Aﬁj
1Bll2 DBl

Here, B ; 7 0 means not equal to the O-vector. See Problem 5.2.

—2H! (Y —Hpj)+ 4 =0 iff;#0. (58

The following Gauss-Seidel algorithm can be used. Assume that we have a param-
eter value B[’”’l] in iteration m — 1, and we cycle through the groups with indices
j=1,...,p. Consider the computation for the jth group in iteration m (i.e. the
up-date for obtaining 3 J[m]) keeping all other parameter values fixed. We can then
up-date the block of parameters corresponding to the jth group as described in the
next subsection.

5.3.3.1 Determining the zero estimates

The idea is now analogous as in Section 4.7.1: we want to determine in an efficient

[m]

manner whether the parameter up-date 3 j in the mth iteration of the algorithm
should be set to zero. We denote by B_; the parameter vector 8 whose block com-
ponents B; = 0, i.e. the coefficients of the jth block are set to zero. As in Section

4.7.1, we use the characterization in (5.8). Set 3 j[m] = 0 if for some vectors e;, t;
with [lejll2 < 1, [t;]2 < 1:

—2HT(Y —HB" ") + A+ 1D1; = 0. (5.9)
Algorithmically, this can be determined as follows. Abbreviate by

vy =2H] (Y -HB""),
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and hence

Vj —AQDtj = llej.
Now, minimize

f; = argmin |V; — 2Dt}|3. (5.10)
1 [lrjll2<1

Clearly, formula (5.9) can only hold if and only if
Vi — AaDijl|2 < 4, (5.11)
and hence:
if (5.11) holds: set B, = 0.

Note that (5.10) is a standard convex optimization problem.

We elaborate briefly how (5.10) could be computed. The optimization is related to
Ridge regression and can be solved as follows:

() = argmin |V; — 2Dt 15 + 7]t 3.
m

J

The solution is explicit:

Aody

==V k=1,...K).
Azzd]%-i-}/( ])k( 3 ) )

(V)
If the unconstrained solution with y = 0 satisfies
17;(0)[l2 < 1, (5.12)

then it must be the solution of (5.10). Otherwise, if ||7;(0)[|> > 1, the minimum in
(5.10) is attained for ||z;||» = 1 and we optimize over ¥:

7 = argmin(||f;(y) ]2 — 1), (5.13)
>0

and the solution of (5.10) then equals:

i,
i+

where 7 is either 0, if (5.12) holds, or as in (5.13) otherwise.

() (Vik (k=1,...,K),
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5.3.3.2 Up-dates for the non-zero estimates

If ﬁj[m] has not been determined to be zero, we make a numerical up-date:

Bl = argﬁminnU—Hjﬂjn%/nmnﬁjuz+zz||Dﬁj||z,

J

where U=Y — Zk¢ijB,£m71].

We now summarize the description in Algorithm 4.

Algorithm 4 Block Coordinate Descent Algorithm for estimator in (5.6)

1: Let B9 € RPX be an initial parameter vector. Set m = 0.
2: repeat
3: Increase m by one: m <— m—+ 1.
Denote by . the index cycling through the coordinates {1, ..., p%:
Il = Im=1 L 1 mod p. Abbreviate by j = .7 the value of .11
4 if (5.11) holds: set B =0,

else B}"! = argmin U — H;B;{3/n+ Aa|B;l2 + A2 | DB; |
j
where U=Y —):k¢ijﬁ,£m71].
5: until numerical convergence

An active set strategy as described in Section 4.7.1 should be used here as well to
drastically speed up computations.

5.4 A sparsity-smoothness penalty of group Lasso type

Instead of the penalty in (5.4), we can use a modification which allows for more
efficient computation relying on a group Lasso structure. Consider the following
sparsity-smoothness penalty of Group Lasso type:

P
peny, 2,(B) = M Y A/ I3+ A212(f;)
Jj=1

14
= 2 Y \JIHB; 3 /n+ A2BTWB;. (5.14)
j=1

with smoothing matrices W; as before. The difference to the penalty in (5.4) is that
here, both sparsity and smoothness norms appear in their squared values under the
single square root, whereas (5.4) involves both norms in non-squared form and with
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no square root common to both of them. From a mathematical point of view, the
penalty in (5.4) is more convenient and potentially better than the penalty in (5.14)
(compare with Problem 8.3 in Chapter 8).

Analogously as before in formula (5.7), we can also optimize over the Sobolev space
of continuously differentiable functions with square integrable second derivatives to
obtain the following additive model estimator:

P
fio. ,pffargmm Y- Zf, i Y ISR+ 2R, (515
j=1

where .7 is the Sobolev space of continuously differentiable functions and I?(f;) =

Il f (x)|>dx assumed to be finite. Proposition 5.1 also applies to the problem in
(5.15), with exactly the same proof. Thus, the solution of the optimization in (5.15)
is given by finite-dimensional basis expansions with natural cubic splines having
knots at the observations.

5.4.1 Computational algorithm

In view of the estimator defined in (5.15), leading to solutions based on expansions
with natural cubic splines, we consider a cubic B-spline parametrization for every
function f;(-) with a reasonable amount of knots or basis functions. A typical choice
would be to use K —4 = \/n interior knots that are placed at the empirical quantiles

of le, e 7Xr5j ), Hence, we parametrize

K
Zﬁ]khjk

where /1, : R — R are the B-spline basis functions and f; = (Bj1,....Bjx)" is
the parameter vector corresponding to f;. With the basis functions we construct an
n x pK design matrix H = [H| |H,| ... |H)), where H; is the n x K design matrix of

the B-spline basis of the jth predictor, i.e. (H;)ix = h;jk (Xi(" )).

The estimator is then defined analogously as in (5.5):

" P
B(M, k) = arg;nin Y —HB|.+M Y \/BA,»TH,-THjﬁj/nwl%B,,-TWjﬁj, (5.16)
J=1

where the K x K matrix W; contains the inner products of the second derivatives of
the B-spline basis functions, i.e.

Wike = / h/]{,k(x)h/j/',f(x) dx
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fork,t€{1,...,K}.

Hence, (5.16) can be re-written as a generalized group Lasso problem, treated in

Section 4.5. ,
ﬁ:Bafgmig )||Y—HBH%+MZ./BJ-TMjﬁj7 (5.17)
=\P1y--sPp =1

where M; = 1H TH + 12W That is, for any fixed A,, this is a generalized group
Lasso problem In partlcular the existence of a solution is guaranteed (see also the
assumption in Proposition 5.1).

Coordinate-wise approaches as described in Section 4.7 are efficient and have rigor-
ous convergence properties. Thus, we are able to compute the estimator exactly,
even if p is very large. As described in Section 4.5, we reparametrize to com-
pute the estimator in (5.17). By decomposing (e.g. using the Cholesky decompo-
sition) M; = RJTR ; for some quadratic K x K matrix R; and by defining 8; = R, ;,
ﬁj = HjR]fl, (5.17) reduces to

p= agmin |Y-HB|;+M Z 1Bjll2. (5.18)
B=(B1,---Bp) j=
Moreover, there exists a value A ¢ < oo such that ﬁl =...= f? » =0 for A >

Al max- This is especially useful to construct a grid of A; candidate values for cross-
validation (usually on the log-scale).

Regarding the uniqueness of the identified components, the results are analogous as
for the Lasso, see Lemma 2.1. Define W () = ||Y — HB||>. We have the following
Proposition.

Proposition 5.2. If pK < n and if H has full rank, a unique solution of (5.18)
exists. If pK > n, there exists a convex set of solutions of (5.18). Moreover, if

(IVWy4 (E),Hz < A1 then Bj = 0 and all other solutions B ., satisfy B 0.

other,j —

Proof. The first part follows due to the strict convexity of the objective function.

Consider now the case pK > n. The (necessary and sufficient) conditions for B to
be a solution of the Group-Lasso problem (5.18) are (see Lemma 4.2)

VW5 (B)jll2 = A1 for B;#0
VW5 (B)jll2 < A1 for B; =

Regarding uniqueness of the pattern of zeroes, we argue as in the proof of Lemma
2 (1) 2 (2 2 (1)
2.1. Sup[()(;se that there are tw(o) solutions §~ and B having f; =0 and
a(l a(2
[VWg(B )jlla=c <A but §; # 0. Use that the set of all solutions is convex,

and thus
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l§p =(1—p)l§(l)+pl§(2)

is also a minimizer for all p € [0, 1]. Since E p.j 7 0 (by assumption) we have that

IVWi(B,);ll2 = 21 for all p € (0,1). Therefore, it holds for g(p) = | YW(B,),l2
that g(0) = ¢ < A; and g(p) = A, for all p € (0,1). But this is a contradiction to the
fact that g(-) is continuous. Therefore, if the regression coefficients in a component

J are all equal to zero (non-active) with || VW (B);]|2 < A1, such a component j can
not be active (non-zero) in any other solution. O

5.4.2 Alternative approaches

Another, more direct approach to incorporate smoothness could be achieved by ap-
plying appropriate regularization in the basis expansions in (5.2) using a suitable
choice of K. For example, if each additive function f;(-) is twice continuously dif-
ferentiable, we would use a basis expansion (e.g. spline functions) with K = n'/3
basis functions 4(-) (k=1,...K):

K
filx) = kz Bjxh;i(x).
=1

We could then use the generalized group Lasso penalty (i.e. the sparsity penalty)

)4 14
AY Nfilla=2Y +/BFHTH;B;i/n,
=1 =1

where H; = [hj7k(Xi(J))]i:1 _____ nk=1,...k and B; = (ﬁj71,...,ﬁj7K)T. Note that this pro-
cedure involves two tuning parameters as well, namely A and K. When having un-
equally spaced design points Xl-(j ), the penalty in (5.4) or (5.14) typically performs
better as it is more flexible to adapt to unequal spacings and also to varying degree
of roughness of the true underlying additive functions.

Alternative possibilities of the penalty in (5.4) or (5.14) include the proposal
peny 5, = A ):?:1 I £illn + lz):?:llz(fj) which basically leads again to a group
Lasso problem with an additional Ridge-type quadratic norm regularization (see
Problem 5.3). However, it appears to have theoretical drawbacks leading to severely
sub-optimal rates of convergence, i.e. the term A,I°(f ;) should appear within the

square root or without the power 2, see Chapter 8, Section 8.4.5.
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5.5 Numerical examples
In this section, we always use the penalized least squares estimator as in (5.14) with

B-spline basis expansions using K = |y/n|. The regularization parameters A; and
Ay are chosen via cross-validation.

5.5.1 Simulated example

We consider first a simulated example with n = 150, p = 200, so = 4 active func-
tions and signal to noise ratio approximately equal to 15. The model is

Yi= A + XD + ) + 4 + &, & iid 4(0,1),
with

fi(x) = —sin(2x), fo(x) =x5 —25/12,
f(x)=x, falx)=e"—2/5-sinh(5/2).

The covariates are simulated from independent Uniform(—2.5, 2.5) distributions
(which is a relatively “easy” scenario due to independence of the covariates). The
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Fig. 5.1 True functions f; (solid) and estimated functions f ' (dashed) for the first 6 components
of a single simulation run from the model in Section 5.5.1. Small vertical bars indicate original
data and gray vertical lines knot positions. The dotted lines are the function estimates when no
smoothness penalty is used, i.e. when setting A, = 0. The figure is taken from Meier et al. (2009).
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true and the estimated functions of a single simulation run are illustrated in Fig-
ure 5.1. We see that the additional smoothness penalty term with A, # 0 yields
indeed smoother function estimates, although mostly at the fine scale. In addition,
the sparsity of the estimator is visible as it (correctly) infers that the fifth and sixth
covariates are noise variables (with corresponding smooth function being the triv-
ial zero function). Results of a larger simulation study (with in particular correlated
covariates) are reported in Meier et al. (2009) showing that the estimator with the
sparsity-smoothness penalty performs very well in comparison to other methods.

5.5.2 Motif regression

We introduced in Section 2.5.2 the problem of motif regression for the HIF1« tran-
scription factor. For our specific dataset, we have binding intensities ¥; of the HIF1 ¢
transcription factor at n = 287 regions of the DNA sequence. Moreover, for each re-
gion i, motif scores Xi(l), . ,Xl.('7 ) of p = 195 candidates are available. A motif itself
is a candidate for the binding site of the HIF1« transcription factor on the DNA

sequence, typically a 5-15bp (base pairs) long DNA sequence. The score Xi(" ) mea-
sures how well the jth motif is represented in the ith DNA region. The candidate list
of motifs and their corresponding scores were created with a variant of the MDScan
algorithm (Liu et al., 2002). The main goal is to find the relevant covariates.

We fit an additive model to this data with n = 287, p = 195 motif scores X; =

(Xl-(l), . .Xl-(p >)T and with response Y; describing the real-valued log-transformed

binding intensity of the transcription factor in DNA region i:

195 0)
Yi=pu+ ) fi(X") +e.
j=1

We used 5 fold cross-validation to determine the prediction optimal tuning param-
eters yielding 28 active functions: that is, § = {j; || fj|l» # 0} = {J Bj # 0} has
cardinality 28. To assess the stability of the estimated model, we performed a non-
parametric bootstrap analysis. At each of the 100 bootstrap samples, we fit the model
with the fixed optimal tuning parameters from above. The two functions which are
selected most often in the bootstrapped estimates are depicted in Figure 5.2, i.e. the
two most “stable” selections and and their refit using the original data. Chapter 10
will discuss in more detail about bootstrapping and stable variable selection. While
the left-hand side plot shows an approximate linear relationship, the effect of the
other motif seems to diminish for larger values. In fact, the right panel corresponds
to a true (known) binding site. Regarding the motif corresponding to the left panel,
a follow-up experiment showed that the transcription factor does not directly bind
to this motif, and we may view it as an interesting candidate for a binding site of
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a co-factor (another transcription factor) which would need further experimental
validation.
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Fig. 5.2 Motif regression. Estimated functions fj (refitted on original data) of the two most stable
motifs. Small vertical bar indicate original data. The right panel corresponds to a true known motif
while the left panel indicates an interesting candidate for a binding site of a co-factor. The figure is
taken from Meier et al. (2009).

We use this real-data example as an illustration that fitting additive models in high
dimensions is indeed feasible. It has the potential for better prediction, in this case
yielding an improvement of the cross-validated prediction error of about 20% in
comparison to a Lasso-estimated linear model, or for better variable selection than
with regularized linear modeling.

5.6 Prediction and variable selection

For prediction, we measure the squared discrepancy ||f — f°||> between the esti-
mated additive function f and the true function f°. This is closely related to the
squared test-sample prediction error E[( f(Xew) — Ynew)?] = E[(f Xnew) — f Knew))?]
+Var(e), where E is with respect to a new test observation (Xew, Ynew). The theory
about prediction and function estimation in the high-dimensional additive modeling

framework is presented in Chapter 8, Section 8.4.

A key assumption for deriving consistency || f — f°||2 = op(1) of the estimator in
(5.5), and (5.6) as a special case, is sparsity in the sense that

Y 1A+ Ao il(f}’) —o(1)
Jj=1 Jj=



92 5 Additive models and many smooth univariate functions

for A; =< n~%/ and Ay =< n~*/3,/log(pn) and where I(.) is a smoothness semi-norm
suchas I(f) = [|f" (x)|%dx. The asymptotic relations for A; and A, are implicitly as-
suming that all f]0 ’s are twice continuously differentiable. (See the Basic Inequality
in Section 8.4 appearing just before formula (8.5)).

For oracle (optimality) results, an additional compatibility condition on the design is
needed ensuring that it is not too strongly ill-posed. Furthermore, we require sparsity
of the active set

So={J I/} I # 0}

whose cardinality is so = |So|. Then, a result of the following form holds: if all ij’s
are twice continuously differentiable

1 = 117 = Op(s0\/log(p)n ™7 /9%)

assuming that p > n and where ¢> depends on the compatibility condition for the
design. Thus, we achieve the optimal rate O(son~*/%) up to the factor +/log(p) (and
1/¢?) which is the price of not knowing which additive functions are active. See
Theorem 8.2 in Section 8.4.

Analogous in spirit as in Section 2.5 for the Lasso, we can derive a variable screen-
ing property, assuming that the non-zero ¢»-norms of the coefficient vectors within
groups (corresponding to the non-zero functions f?) are sufficiently large (the ana-
logue of the beta-min condition in formula (2.23) in Chapter 2) and requiring a
compatibility condition for the design matrix. Then, with high probability, for suit-
ably chosen penalty parameters A; and A;, the sparsity-smoothness additive model
estimator selects at least all non-zero functions:

§={J; I1filla #0} 280 = {js 1f7lln # O}

In view of the restrictive assumptions one needs for the Lasso in a linear model for
consistent variable selection, see Section 2.6 and Section 7.5.1, we do not pursue
this topic for additive models. From a practical point of view, it is much more real-
istic that we achieve a reasonably good variable screening result with much reduced
dimensionality where |S| is much smaller than the number p of all covariates.

5.7 Generalized additive models

The extension to generalized additive models is straightforward. The model relates
a univariate response variable Y and a high-dimensional covariate X as follows:

Y1,...,Y, independent,
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p .
gEY|Xi =a]) = f(x) =+ Y £, (5.19)
j=1

where g(-) is a specified known link function, p is the intercept term and f; are
smooth univariate functions as in (5.1). For identification purposes we assume that
all f;’s are centered, i.e.

for j=1,...,p. The design points X; are allowed to be either fixed or random.

As in generalized linear models in (3.1), examples include Bernoulli- or Poisson-
distributed response variables. Typical link functions are described in Chapter 3.

Estimation of a high-dimensional generalized additive model can be done analo-
gously to (5.4) or (5.7):

~ A

Q. fi,....fp= argmin — Zlogpf (Y1) +Zpenxlxz(f]) (5.20)
Wif1 e fpEF i= j=1

where pfx (y|x) is the density of Y|X = x which depends only on f(x) = u +
Z] 1 filx W ) and

peny, 1,(fj) =M Z [1.fjlln+ 22 21 )

is as in (5.4) or (5.7). Note that we have to deal here with an unpenalized intercept
term u. This does not create any further difficulties. The optimization can be done
along the lines described in Section 5.3.3 but using the negative gradient of the
negative log-likelihood loss and allowing for an unpenalized intercept term.

When using the alternative sparsity-smoothness penalty of group Lasso type from
(5.14), the optimization in (5.20) becomes a Group Lasso problem, as discussed in
Section 5.4.1, which involves here an additional unpenalized intercept term. The
algorithms presented in Section 4.7 can be used and they easily allow to deal with
additional unpenalized terms.

5.8 Linear model with varying coefficients

Another useful extension of the linear model in (2.1), but based on an additional
“time” component of the data structure, is a regression model observed at different
units, such as time, whose coefficients are smoothly changing:
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u+2ﬁ )X, t,)+e,(t,) i=1,...,n,r=1,....,T, (521)

where {&(t,); i=1,...,n,r=1,... T} arei.i.d., independent of {X;(z,); i=1,.
r=1,...,T} and w1th E[e, (t,)] = 0. The covariates are either random or ﬁxed
and the regression coefficients change smoothly with respect to 7., that is §;(-) are
smooth univariate functions. If the first covariate represents an intercept term, the
model (assuming p covariates plus an intercept) can be represented as

( ) #+ﬁ0 Iy +ZBJ tr tr)+gt(tr)

with identifiability constraint .7, Bo(z,) = 0.

The model (5.21) involves the estimation of p univariate smooth functions f;(-) and
thus, we exploit a close relation to the additive model in (5.1). We proceed similarly
by using the estimator:

ﬂ?ﬁlw"aﬁp:
n (T Yy 3 D2y
argmin (T 'n IZZ(Yi(lr)—IJ«—Z,lﬁj(fr)Xi () +Z,1Penk.,lz(ﬁj))v
j= j=

WiB1eBpEF r=1i=1
(5.22)

where .7 is a suitable class of functions (e.g. the Sobolev space of continuously
differentiable functions with square integrable second derivatives) and the sparsity-
smoothness penalty is as in (5.4),

peny, 4, (Bj) = Al Bjlln + 221(B)),

or using the alternative sparsity-smoothness penalty of group Lasso type as in (5.14):
peny, 2, (Bj) = A/ [1B; 117 + A3 12(By). (5.23)

Analogously to Proposition 5.1, when optimizing in (5.22) over the space of contin-
uously differentiable functions with square integrable second derivatives, the solu-
tions are natural cubic splines with knots at 7, r = 1,...T. This fact can be derived
analogously to the proof of Proposition 5.1. Due to the sparsity-smoothness penalty,
the solution will be sparse in the sense that some functions f3;(-) = 0, depending on
the data and the magnitude of the tuning parameters A; and A,.

When using the penalty in (5.23), the estimator in (5.22) can be re-written in terms
of a (generalized) group Lasso problem, in an analogous way as in Section 5.4.1 for
the additive modeling estimator. We leave the details as Problem 5.4.
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5.8.1 Properties for prediction

The accuracy of the estimator in (5.22) can be measured in terms of estimating the
functions {B;(-); j=1,...,p} orin terms of predicting a new response ¥y,,. We will
discuss in Chapter 8, Section 8.5 the prediction properties in the high-dimensional
context. Key assumptions for deriving consistency or oracle results are again of the
same nature as for the group Lasso or the Lasso: we need a sparsity assumption
and for oracle (optimality) results, we require an additional compatibility condition
which excludes ill-posed designs.

5.8.2 Multivariate linear model

It is interesting to make a connection to the multivariate regression model: if

Xl-(j ) (t,) = Xi(j ) for all t, then the model in (5.21) becomes a multivariate linear

model

Yi(ty) = g+ Zp: B;(t)X + &i(t,).
=1

If we make no smoothness assumption on f3;(-), that is the pT parameters f3;(¢,) (j =
l,...,p;t = 1,...,T) are unrelated of each other, we obtain the standard multi-
variate linear model. The indices t, € {1,...T} could then be replaced by indices
t € {l,...,T} since without smoothness, there is no need to consider closeness of
different #,’s.

We will show in Chapter 8, Sections 8.5 and 8.6, that without smoothness, we gain
relatively little over running the Lasso for all 7" regression problems separately. Si-
multaneous estimation as in (5.22) is advantageous in presence of smoothness struc-
ture for the regression coefficients with respect to 7. The theory shows for example
that when optimizing over the space of continuously differentiable functions, the es-
timator has much better performance than 7' single Lasso’s for T >> (n/log(p))'/*.

5.9 Multitask learning

We have briefly touched in the previous section on the multivariate linear model:

P .
Vi)=Y BixY + &), i=1,...,n, 1=1,....T, (5.24)
j=1
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where {g(t); i=1,...,n,t =1,...,T} are i.i.d., independent of {X;; i =1,...,n},
with E[g;(¢)] = 0, and the covariates are either fixed or random covariates. Note the
relation to the model in (5.21). There, the regression coefficients B;(z,) are struc-
tured as smooth univariate functions, and hence the appearance of the indices 7,
which denote potentially non-equispaced points. Furthermore, the model in (5.21)
allows for different covariates X;J ) (t-) when varying r, a feature which we will in-
clude in the following extension of (5.24).

Consider the slight extension of (5.24) where the covariates may also change over
the indices ¢:

P
Z () +&t),i=1,...,n, t=1,....T, (5.25)

where ¢&(¢) are as in (5.24) and Xi“ )(t) are either fixed or random covariates. This
model is the analogue of (5.21) but with no structure on the coefficients f3;(r). Esti-
mation of the coefficients from the model in (5.25) can be seen as a special case of
a high-dimensional multitask learning problem (Caruana, 1997).

We can estimate the unknown parameters f3;(r) either by using the Lasso for each
ofther =1,...,T regression separately, i.e.,

B (t) = argmin (n Z Zﬁ, +7Lﬁ||1> =1,...,T.

15++Pp i=1

As usual, the Lasso will be sparse that some ﬁ (1) = 0 for some indices j and ¢
but without exploiting any structure among the t = 1,...T different regressions.
The Lasso approach is easy and straightforward as it works by considering the T
regression problems separately.

Alternatively, we can use the group Lasso by considering the group vectors ﬁcg} =
(B;(1),...,B;(T))" foreach j=1,...,p:

(Bi(1); j=1,...,p,t=1,...,T}
= argmin ( —lr- IZZ i +/IZ|\&/ ||2>

{Bj(0); jit} i=1t=

This group Lasso estimator has the sparsity property that for some covariates j,
the parameter estimates f3;(r) = O for all indices 7. In some applications this is a
desirable property, for example when doing variable selection in terms of covariates
Jj over all time points 7.

We will show in Chapter 8, Section 8.6 that in terms of prediction, there is a gain by
a log(p) factor if T is large, in comparison to using the decoupled Lasso approach
over T individual univariate response regressions; see the discussion of Theorem 8.4
in Chapter 8. Furthermore, there are some differences in the underlying assumptions
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(about compatibility conditions or restricted eigenvalues for the underlying design
matrices): Lemma 8.6 (Chapter 8) shows that the conditions are becoming weaker
when considering the multivariate case simultaneously.

Problems

5.1. Consider the B-spline basis: for literature, see e.g. in Hastie et al. (2001). Ex-
amine formula (5.2) with K = 10. Where would you place the knots for the 10- p
different B-spline basis functions?

5.2. Block coordinate descent Algorithm 4
Prove the characterization of a solution given in formula (5.8).

5.3. Consider the additive model estimator minimizing the function
2 . o
1Y —HB3/n+2A0 Y, 1 filla+22 ), P2(f)),
j=1 j=1

where f; is as in (5.2) and H as in Section 5.2.1. Show that this can be re-written
as a generalized group Lasso estimator by an appropriate extension of the design
matrix H.

5.4. Show that the optimization in (5.22) with the penalty in (5.23) can be re-written
as a generalized group Lasso problem.

5.5. Consider a multivariate linear model with correlated errors (and fixed covari-
ates):

P
Z Dye(t),i=1,....n t=1,....T,

where for & = (g(1),...,&(T))7, &1,...,€& are i.i.d. A7(0,X¢).

(a) Assume that X is known. Write down the penalized maximum likelihood esti-
mator with group Lasso penalty.

(b) Consider the case where X, is unknown. Assume that 7" is small relative to sam-
ple size n. What kind of procedure would you use to estimate X (and this estimate
could then be plugged-in to the expression derived in (a)).



Chapter 6
Theory for the Lasso

Abstract We study the Lasso, i.e., £1-penalized empirical risk minimization, for
general convex loss functions. The aim is to show that the Lasso penalty enjoys
good theoretical properties, in the sense that its prediction error is of the same or-
der of magnitude as the prediction error one would have if one knew a priori which
variables are relevant. The chapter starts out with squared error loss with fixed de-
sign, because there the derivations are the simplest. For more general loss, we de-
fer the probabilistic arguments to Chapter 14. We allow for misspecification of the
(generalized) linear model, and will consider an oracle that represents the best ap-
proximation within the model of the truth. An important quantity in the results will
be the so-called compatibility constant, which we require to be non-zero. The latter
requirement is called the compatibility condition, a condition with eigenvalue-flavor
to it. Our bounds (for prediction error, etc.) are given in explicit (non-asymptotic)
form.

6.1 Organization of this chapter

We start out in Section 6.2 with the case of squared error loss with fixed design.
The theoretical properties then follow from some rather straightforward inequali-
ties and a probability inequality for the error term. A key condition, encountered
here and also more generally, is the so-called compatibility condition, which is an
identifiability assumption in terms of the £;-norm of the coefficients in the model.

Once the theory for squared error loss is established, it is relatively clear how to ex-
tend the results to general loss. We will consider convex loss throughout this chapter.
With convexity, we are able to localize the problem (that is, one only needs to con-
sider a neighborhood of the “truth”, or more generally, a neighborhood of a linear
approximation of the “truth”). The results can be found in Sections 6.3- 6.7. Af-
ter an introduction to general convex loss in Section 6.3, Section 6.4 discusses the
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so-called margin condition, which is the behavior of the theoretical risk near its min-
imizer. Section 6.5 provides a benchmark for how good empirical risk minimizers
behave if one knows the relevant variables. Section 6.6 gives conditions for consis-
tency of the Lasso, and Section 6.7 presents the main result: an oracle inequality
for the Lasso (see Theorem 6.4). Section 6.8 examines the /,-error of the Lasso, for
1 < g < 2. A brief discussion of the weighted Lasso is given in Section 6.9.

This chapter is only about prediction error, and ¢ -error of estimated coefficients,
1 < g <2, and not about the selection of variables (the latter topic will be treated
in Chapter 7). The results follow from a so-called Basic Inequality, which is a re-
formulation of the “arg min” property. This property is based on the fact that the
Lasso estimator is a penalized empirical risk minimizer and hence its penalized em-
pirical risk is not larger than that of any other parameter choice, in particular, that
of a suitable “oracle”. For the selection of variables, one takes the KKT conditions
as starting point (see Lemma 2.1, and also Section 7.5), instead of the “arg min”
property. For selection of variables, under only a compatibility condition, the Lasso
appears to be not well-calibrated. More refined two stage procedures (the adaptive
Lasso, see Section 7.6) have been proposed. As an intermediate zone, we study the
prediction error using the adaptively weighted Lasso and the related concave penal-
ties in Sections 6.10 and 6.11, returning to squared error loss with fixed design for
simplicity. These results will be applied in Chapter 7 to the variable selection prob-
lem.

The results are presented in a non-asymptotic form. To better understand their im-
plications, we sometimes present a short asymptotic formulation.

Actually, much of the effort goes into showing that the ¢;-penalty resembles the
lo-penalty. One could argue that this is a topic belonging to approximation theory,
rather than statistics. We refer to Candes and Tao (2005) and Donoho (2006) for im-
portant results in a noiseless setting. We consider in this chapter the prediction error
in a noisy setting. Due to the noise, this statistical problem is in a sense harder than
the corresponding noiseless deterministic problem. Yet, most of the random part
can be separated from the approximation theory part. The probabilistic arguments
are only briefly addressed in this chapter. They come down to showing that a certain
event, which we generically denote as .7, has large probability. Most probabilistic
arguments are deferred to Chapter 14.

Some simple random matrices are considered in Section 6.12. There, we show that
the conditions on the empirical design matrix when the design is random can be
replaced by population counterparts on the population design, provided there is
enough sparsity (see Corollary 6.8).

We give a more detailed account of the compatibility condition in the last section
of this chapter, Section 6.13. There, its relation with conditions in the literature are
given, such as restricted eigenvalue conditions (Koltchinskii, 2009b; Bickel et al.,
2009) restricted isometry conditions (Candes and Tao, 2005), and coherence condi-
tions (Bunea et al., 2007a,b,c).
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6.2 Least squares and the Lasso

The aim of this section is to describe the main theoretical arguments for establishing
oracle inequalities for the Lasso. The easiest context to do this is the one of squared
error loss with fixed design. However, virtually all results carry over to more general
loss functions and to random design: see Sections 6.3- 6.7.

6.2.1 Introduction

The linear model, as described in Chapter 2, is
I
Y=Y BiX;” +e&,i=1,....n,
j=1

or, in matrix notation,
Y=XB+e¢,

with Y, %1 the vector of responses, X, the design matrix, and &% the vector of
measurement errors. To simplify in this section, we assume that the design X is
fixed, and that € is .4 (0, 6%)-distributed. We moreover assume in Subsection 6.2.2
that the linear model holds exactly, with some “true parameter value” 3°. One may
argue that this can be done without loss of generality by a projection argument.

We first sketch what we mean by an “ oracle inequality”. Suppose for the moment
that p < n and that X has full rank p. Consider the least squares estimator in the
linear model

b= (X"X)"'XTy.

Then from standard least squares theory, we know that the prediction error
2 RON|(2 /2
IX(6—pB")2/0

is x;-distributed, i.e., it has the chi-square distribution with p degrees of freedom.
In particular, this means that

E|X(b- )3 o*
n n '

"'Let EY := f° be the regression of Y on X. One can study the estimator of the projection i(ﬂM =
Xﬁo of £ on the span of the columns of X, and, by orthogonality (Pythagoras” Theorem), separate
the estimation of £, from the model bias [|f),; —°||2. (See also Koltchinskii et al. (2010b) for
refined projection arguments.) We note however that projection arguments are less straightforward
when minimizing over only a subset of ’s, and that moreover, for other loss functions, projection
arguments will be more involved, or that in fact a separation between estimation and approximation
error is not possible.
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In words: after reparametrizing to orthonormal design, each parameter [3]0 is esti-

mated with squared accuracy 62/n, j = 1,..., p. The overall squared accuracy is
then (62 /n) x p.

We now turn to the situation where possibly p > n. The philosophy that will gener-
ally rescue us, is to “believe” that in fact only a few, say s, of the ﬁjo are non-zero.
We use the notation

So:={j: B} #0},

so that so = |So|. We call Sy the active set, and so the sparsity index of BO. If we
would know Sy, we could simply neglect all variables X () with J ¢ So. Then, by the
above argument, the overall squared accuracy would be (62 /n) x so.

Because Sy is not known, one needs some kind of regularization penalty. A, both
mathematically and computationally, sensible choice is the ¢1-penalty, i.e., the Lasso

X.3||2

pi=argmin{ =P 28, ).

Indeed, the Lasso turns out to have good theoretical properties, as we will show in
Corollary 6.2. Loosely speaking, we show that, with a proper choice for A (of order

o+/log p/n), one has the “oracle inequality”

X(B —B9)|2 o?1
IX(B — B> < const, 21082 o
n n

with large probability. For the “const.” here, one can find explicit values which only
depend on p or n through the (scaled) Gram matrix £ := XX /n. Note that we have
inserted an additional (log p)-factor, which can be seen as the price to pay for not
knowing the active set Sy (see also Donoho and Johnstone (1994)).

One may argue that our oracle is somewhat too modest. There may for example be
very many non-zero | [3]0| which are actually very small (say smaller than the noise

level /o2 /n). Indeed, in that case, one would rather want to have an oracle bound
which is proportional to the number of significantly non-zero ﬁjo times 62 log p/n.
This extension is mathematically of the same nature as the extension where the
linear model is not assumed to hold exactly, which will be treated in Subsection
6.2.3.

6.2.2 The result assuming the truth is linear

The basis of all our derivations (as far as prediction error is concerned; for model
selection we will use additional arguments) is the following so-called Basic Inequal-

ity.
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Lemma 6.1. (Basic Inequality) We have
IX(B—B)I3/n+ 211 < 26"X(B—B)/n+2AlB].
Proof. This is simply rewriting the inequality

1Y =XB5/n+ 1Bl < Y =XB°I3/n+ 2118

For the case of quadratic loss, the term
26"X(B - B°)/n 6.1)

will be called the “empirical process” part of the problem. It is the term where the
measurement error plays a role, i.e., the random part. The empirical process part
for quadratic loss can be easily bounded in terms of the ¢;-norm of the parameters
involved:

ZIETX(ﬁﬁO)IS(m]ax 2leTXU I)IIB B 62)

The idea of the penalty is that it should typically “overrule” the empirical process
part. Let us therefore introduce the set

T = {max 2e"XU |/n<AO}

1<;<

where we assume (quite arbitrarily) that A > 24, to make sure that on .7 we can get
rid of the random part of the problem.

It is not difficult to show that for a suitable value of A, the set .7 has large proba-
bility. Indeed, with Gaussian errors, the argument goes as follows. Let us denote the
diagonal elements of the Gram matrix (scaled by 1/n) £ := X" X/n, by

6]2 Z:ZA:]'L/', j: l,...,p
Lemma 6.2. Suppose that 67 = 1 for all j. Then we have for all t > 0, and for
2421
%::26\/71‘ + ng,
n
P(7) > 1 —2exp[—1%/2].

Proof. As 67 = 1, we know that V; := e"X) /(v/nG?) is .4/ (0, 1)-distributed. So

> +21 1>
P (1max Vil > t2+210gp> < 2pexp {*‘ng] = 2exp [] _
<js<

2 2
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O

We now first apply Lemmas 6.1 and 6.2 to establish consistency of the Lasso. The
result is analogous to Greenshtein (2006) (see also our discussion in Chapter 2).

Corollary 6.1. (Consistency of the Lasso) Assume that 612 =1 for all j. For some
t > 0, let the regularization parameter be

[2
A 46 t +21ogp’
n

where & is some estimator of 6. Then with probability at least 1 — a, where
o :=2exp[—*/2] +P(6 < o),

we have

2X (B~ BO)II3/n < 3181

Asymptotics We conclude that taking the regularization parameter A of order
\/log p/n, and assuming that the ¢;-norm for the true B is of smaller order than

\/n/logp, results in consistency of the Lasso. The paper Bartlett et al. (2009)
presents - modulo log-terms - the corresponding result for the case of random design
(see also Theorem 14.6 in Chapter 14, which is from Guédon et al. (2007)).

We need that the estimator & of ¢ is well-chosen, i.e., not too small, but also not
much too large. One may consider the estimator

62:=Y"Y/n
(after centering Y, see also Section 6.9%). The signal-to-noise ratio is

0
svr:— 1XP 1.
\V/no

By Problem 6.1, for any reasonable signal-to-noise ratio SNR, the estimator &
YTY/ n satisfies 0 < 6 < const.o, with the “const.” well under control.

2:

We now return to the more refined oracle inequality. To exploit the sparsity of 8, we
need to introduce some more notation. Let us write, for an index set S C {1,...,p},

Bjs:=Bl{j €S},

and (hence)

2 Generally, in practice, one first centers both the X as well as Y, and then proceeds with the
Lasso on the centered data. Equivalently, one may keep an intercept, but leave the intercept un-
penalized. As the centered Y no longer has independent components, and we also as yet do not
consider unpenalized terms, our theory does not immediately go through. However, no essentially
new arguments are required to deal with the situation. To avoid digressions, we do not treat the
issue here, but defer it to Section 6.9.
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Bjse = Bjl{j &S}

Thus Bs has zeroes outside the set S, and the elements of Bgc can only be non-zero
in the complement S¢ of S. Clearly, B = Bs+ Bsc. The next lemma is a starting point
for the deterministic part of the problem.

Lemma 6.3. We have on .7, with A > 2y,
20X (B = B3 /n+ A Bsgll < 32[1Bs, — B ll1-
Proof. On 7, by the Basic Inequality, and using 24y < A,

21X (B~ BO)I3/n+2211Blly < Al — Bl +24] Bl

But on the left-hand side, using the triangle inequality,

) A 3 o s X
1B = 1Bsy I+ 11Bsg 1 = 1Byl = 11 Bsy = Bsy It + 1l Bsg Il

whereas on the right-hand side, we can invoke
1B =Bl = 1Bsy — By Il + 1Bss [11-

O

We will need certain conditions on the design matrix to make the theory work.
These conditions will be referred to as “compatibility conditions”, as they require a
certain compatibility of ¢;-norms with ¢>-norms. In fact, a compatibility condition
is nothing else than simply an assumption that makes our proof go through.

In Lemma 6.3 above, a term involving the ¢;-norm || ,350 - ﬁsoo |l1 occurs on the right-

hand side. To get rid of it, we want to somehow incorporate it into the term 2||X(f —
B%)13/n at the left-hand side. Now clearly, by the Cauchy-Schwarz inequality, we
can replace the /1-norm by the /;-norm, paying a price /50:

R 0 R 0
1Bso = Bsy 11 < v/s0l[Bsy = Bs ll2-

We are now in the ¢>-world, where we have to relate ||L§’S0 - Bgo 2 to [|X(B = BO)]|2.
Recall the (scaled) Gram matrix

£ :=X"X/n,

so that . . o
IX(B—B)5/n=(B—BN"E(B-B°).

If for some constant ¢y > 0,

1B — B3 < (B—B)"£(B—B°)/93, (6.3)
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we can continue our chain of inequalities in a desirable way. However, as ﬁ is ran-
dom, we need inequalities for a whole class of ’s. It may be too rough to require
(6.3) for all B3, as this needs S to be non-singular (which is of course troublesome:
with p > n, £ is always singular). However, we know from Lemma 6.3, that on .7,

1Bsgllr < 311 Bs, — B l1-
Thus we may restrict ourselves to such 8 (provided .7 has large probability). The
compatibility condition is exactly this.

Compatibility condition We say that the compatibility condition is met for the set
So, if for some ¢o > 0, and for all B satisfying ||Bsg |1 < 3||Bs, |1, it holds that

1B, 17 < </3T2/3>so/¢§- (6.4)

We remark that the constant 3 appearing in this definition is quite arbitrary. It can
be replaced by any constant bigger than 1, when we adjust some other constants (in
particular in the lower bound for A).

The next question is then of course: when does this compatibility condition actu-
ally hold? We first recall that if in (6.4), we replace ||Bs, |3 by its upper bound
50/|Bs, ||3, the condition is similar to a condition on the smallest eigenvalue of £.
But the restriction |[Bsg[[1 < 3|[Bs, |1 puts a limitation on the set of B’s for which
(6.4) is required, so that it is in fact weaker than imposing non-zero eigenvalues.
Note further that it can not be checked in practice, as Sy is unknown. If its cardinal-
ity so = |So| were known, it is of course sufficient to check the inequalities for all
sets S C {1,...,p} with cardinality so. This is called the restricted eigenvalue as-
sumption in Bickel et al. (2009). The assumption can also be found in Koltchinskii
(2009a,b). We call d)(% a compatibility constant (and following Bickel et al. (2009),
sometimes refer to it as a (lower bound for the) restricted eigenvalue) of the matrix
£ Finally, observe that we can merge so/¢ into one constant, say yg := so/@93. The
reason why we do not use this notation is solely to facilitate the interpretation. In
Section 6.13, we will further clarify the relation of compatibility conditions with re-
stricted eigenvalue conditions, coherence conditions (Bunea et al., 2006, 2007a,b,c)
and restricted isometry conditions (Candes and Tao, 2007). Furthermore, we show
in Section 6.12 that it suffices to have the compatibility condition with £ replaced
by a suitable approximation (Corollary 6.8) (for example a population variant X of
the empirical Gram matrix ).

An oracle inequality now reads as follows.

Theorem 6.1. Suppose the compatibility condition holds for Sy. Then on 7, we
have for A > 27y,

IX(B — BOI/n+ Al — Bl < 44750/ 5.
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The theorem combines two results. Firstly, it shows the bound

IX(B —BO)I3/n < 42750/ 85

for the prediction error. And secondly, it gives the bound

1B =Bl < 44s50/95

for the ¢;-error. (Both bounds hold on .7.) In Section 6.8, we present the implied
bounds on the /,-error, 1 < g <2, assuming there a stronger compatibility condition.

Proof of Theorem 6.1. We continue with Lemma 6.3. This gives
2X(B — BO)3/n+ 218~ Bl

=2[X(B — B)I3/n+ Al Bs, — BS, I + A1 B I
< 4/ X(B — BO)ll2/ (vngo)
< |X(B —B)3/n+42%50/ 95,

where we inserted the compatibility condition in the first inequality, and used
duy < u> + 47

in the second inequality. O

Combining Theorem 6.1 with the probabilistic statement of Lemma 6.2 to handle
the set .7, gives the following corollary.

Corollary 6.2. Assume that 6} =1 for all j and that the compatibility condition
holds for Sy, with £ normalized in this way. For some t > 0, let the regularization

parameter be
2421
3 4| D 2loep.
n

where &% is an estimator of the noise variance 6>. Then with probability at least
1 — o, where

2

o :=2exp[—*/2] +P(6 < o),

we have

IX(B = BO)I3/n+A11B — Bl < 42750/ 95

We remark that it is straightforward to extend the situation to the case of indepen-
dent, centered, non-Gaussian errors. One may use for example the moment inequal-
ity
n 2
E(max leTX! >|) < 8log(2p) Z(max X ) Ee? (6.5)

1<j<p i—=1 1<j<p
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(this is up to constants Nemirovski’s inequality, see Diimbgen et al. (2010), and see
also Example 14.3), i.e., it is possible to prove similar results assuming only second
moments of the errors, and (say) bounded co-variables X /) (Problem 6.2).

The normalization with 6+ = 1 for all j is qulte natural, and often used in practice.
Tacitly assuming the covarlables are centered, 67 is simply the (sample) variance of

X, and the normalization puts all covarlables on the same scale. It is equivalent to
defining f as

3::argn}3in{ Y Xl3||2 +;LZG,\B, }

i.e., to taking the weighted ¢;-penalty pen(f) := Zﬁ.’:l 6/|B;|. Of course, with all

ones on the diagonal, the matrix Y is rather a correlation matrix. In some situations
(in partlcular with random X)), the distinction will be stressed by writing R :=
diag(£)~'/2% diag(£)~'/? for the normalized £. Recall that the normalization is
only used in Lemma 6.2. It leads to good bounds for the probability of the set .7.
Such bounds of course also hold under more general conditions.

Note finally that '

67 (B> = 11X B3 /n,
in other words, the weighted K 1 norm is the /1-norm of the vector of #>-norms of the
individual linear functions X/ [3 Such a viewpoint will help us to generalize to the

group Lasso penalty (see Subsection 4.5.1 and Section 8.3). Section 6.9 provides a
discussion of more general weights.

6.2.3 Linear approximation of the truth

We extend the theory to the case where
EY :={

is possibly not a sparse linear combination of the variables X (). One then still has
the Basic Inequality of Lemma 6.1, albeit with an additional term representing the
approximation error: for any vector 3*,

IXB —£13/n+ 4Bl <26"X(B —B*)/n+AIB* | +IXB* —£]3/n. (6.6)

We can carry out our chain of inequalities as before, taking along the additional term
XB* —1°||3/n at every step. One then finds on .7, and assuming A > 4o (instead
of A > 24y as we did in the previous section),

4|XB —£113/n+ 3] B l1 < SA||Bs. — Bs, Il +4IXB" — |3/,
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where S, := {j: B} # 0}. (Note that S, depends on *, and that §* is as yet ar-
bitrary.) Due to the approximation error term || XB* —°|,, we cannot directly con-
clude anymore that ||Bsc |1 < 3||Bs, — Bg. [[1- To handle this, we take the following

approach. One of the two expressions on the right-hand side is the larger one. Either
(Case i))

ABs. — Bs. |l = |XB* —£°[I3/n,
or (Case ii))

ABs. = Bs. Il < IXB™ —£°]13/n.

So it must hold that either (Case i))
4XB — 13 /n+ 32| Bsc 1 < 97| Bs, — B3 |1,

or (Case ii))

4XB —1°[13/n+ 34| B [ < 9IXB* —£|I3/n,

(or both). In the first case, we again find ||BS£ I <3|Bs. — Bs |1, and we can go on
as before, invoking the compatibility condition for general sets (see below). In the
second case, we consider the argument done, as the obtained inequality is already
quite good if B* well-chosen (see below).

The compatibility condition considers sets {j : f; # 0} for general *, i.e., it con-
siders general sets S.

Compatibility condition (for general sets) We say that the compatibility condition
holds for the set S, if for some constant ¢(S) > 0, and for all B, with ||Bsc|[; <
3||Bs||1, one has

1BsE < (ﬁTﬁﬁ) 151/0%(S).

Let . be some given collection of index sets S for which the compatibility condition
holds.

Definition of the oracle We define the oracle B* as

— ar mm A Sﬁ
B* =arg {IIXB ©)3/n+ (ﬁ)}, (6.7)

where Sg :={j: B; # 0}, and where sg := |Sg| denotes the cardinality of Sg.
The factor 4 in the right hand side of (6.7) comes primarily from our choice A > 44,.

Note that we may define the oracle as minimizing over all 3, with the convention
¢(S) = 0 if the compatibility condition does not hold for S. On the other hand, if
o= Jpo is linear, we may want to take .%” = {So}.

We use the shorthand notation S, := Sg+, 5. = |S«], and ¢, := ¢(S,). In other words,
given a set S, we first look for the best approximation of f using only non-zero



110 6 Theory for the Lasso
coefficients inside the set S:
b5 := arg min | XB —£]|,.
B=Ps
We write fg := XbS. Thus fs is the projection of £ on the space spanned by the

variables {X(/)} jes- We then minimize over all S € .7, with an {y-penalty, i.e., a
penalty on the size of S, penalizing as well a small compatibility constant:

S, = argm1n{||f5—f0||2/ + 4:;;(“; }

The oracle is B* = b5+.

Theorem 6.2. Assume that 6]-2 =1 for all j and that the compatibility condition
holds for all S € ., with £ normalized in this way. For some t > 0, let the regular-

ization parameter be
24210
A =864/ Dreoer
n

where G is some estimator of the noise variance 6. Then with probability at least
1 — o, where
a :=2exp|-1*/2] + P(6 < o),
we have
. S . 24A%s.,
2AXP —LU/n+AlIp ~ Bl <6IXB"—l3/n+ =5=.  (©68)

We emphasize that in our definition of the oracle *, one is free to choose the col-
lection . over which is minimized (assuming the compatibility condition for all
S €., or even some S € .7). In particular, when 0 = XB° and .7 = {So}, with
So := Sp,, gives B* = [y and hence, we obtain

24)%s,
oF

where ¢o = ¢(Sp) and so = |So|. For a larger collection of sets .7, the right-hand
side of (6;8) can be much smaller, i.e., then one has a better bound for the grediction
error || X3 —£°||3/n. In addition, one now has the bound for the ¢;-error || — B*|;.

One may object that the oracle * is difficult to interpret, so that || — B*||1 is a less
interesting quantity to look at. However, one can use of course the triangle inequality

1B =Bl < 1B~ B[l + 18"~ B°Ih-

The term ||8* — B°||; can easily be bounded by the right-hand side of (6.8) plus
A ||[3§’0\S* |l1 (see Problem 6.4). Finally, by the triangle inequality, (6.8) implies

2IXB —1°)13/n+ 211 —B°ll: <




6.2 Least squares and the Lasso 111

24025,
02

In view of the latter it would also make sense to reformulated the oracle to

2/IXB —1°)13/n+2A[1B — B°llr < 6IXB" —1°)13/n+ +A[B* =Bl

4%
* . B
B :afgﬁzfélﬁllely{||xl3—fo||%/n+ 5 +lﬁ—l30||1/6}~

$*(Sp)

In fact, the particular definition of the oracle plays only a limited role. The vector *
is chosen to optimize the result in a certain way. Throughout, our statements may
also be seen as holding for any fixed B*. We note however that when considering
general loss in the next sections, we will need that the chosen * has a small enough
approximation error, as this will be used to localize the problem.

Proof of Theorem 6.2.

Case i) On .7, whenever

ABs. = Bs. Il = |XB™ —£°]3/n.

we have
4XB — 13 /n+ 32| Bsc 1 < 97| Bs, — B3 |1,
so then
4XB — 15 /n+ 31 — B[l < 122 1Bs. — Bs. I
_ 2AVSIX(B Bl _ 2422
- Vno. 97

Here, we use 12uv < 18u% + 22, and 12uv < 6u® + 6v2. Hence

+2|IXB — £13/n+ 6||IXB" — |3 /n.

242,
02

2[XB —1°13/n+ 34115 — B*|l < 6]XB" —£||3/n+

Case ii) If on the other hand, on .7,

ABs. = Bs. Il < IXB™ —£°]13/n.

we get

4XB —£13/n+ 34 Bss |1 < 9IXB™ —£]13/n,

and hence

4XB —€13/n+ 3015 — B* | < 12|XB" —1°]3/n.
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6.2.4 A further refinement: handling smallish coefficients

The oracle, as defined in the previous section, trades off the approximation error
with an /yp-penalty including a restricted eigenvalue. We now refine this to a trade-
off including both ¢y- and ¢;-penalties. Namely, for each S, we define

i

This means that the smaller coefficients bf go into the /-penalty, and the larger
ones in the {y-penalty. Putting fewer coefficients into the £y-penalty will generally
increase (and hence improve) the value for the restricted eigenvalue ¢2(S°). Indeed,

for §° C S, one has
0(5°)/18°| = ¢*(S) /IS

3A218°]
;= arg min + (%) g g0
g { ¢2(S°) II( )S\s

(see Lemma 6.19).

Definition of the oracle Ler
S, == argminy{ 3||fs — )3
gSEg},{ [fs —£[|3/n

12A2]5°0|

+ ¢2(Ssub)

4207550}
The oracle is B* := b5+.

We use the short-hand notation s%'° := \S““b| and @5 := ¢ (S3UP).

Theorem 6.3. On the set

T = { max 2|e"XV)|/n < AO}

1<j<p
we have, for A > 4,
2|XB — 113 /n+ 1|8 — Bl

24/12 ﬂub

<6|IXB* —1]13/n+ ( mb)

+ SA’HﬁS \ S3ub ||1

By replacing (for some §) S*° by the (sub-optimal) choice S° := @, Theorem 6.3
implies the bound

20X 3 /n+A|1B b5 < 6]Xb° — 113 /n+8A|1b°]1 V'S,

on 7. On the other hand, replacing $*"® by the (sup-optimal) choice S° := S gives
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24)2|5|
9*(S)

In other words, Theorem 6.3 combines a consistency result (compare with Corollary
6.1) with an oracle result (Theorem 6.2).

2/1XB —£°)3/n+A|1B — 5|1 <6|Xb5 — 1|3 /n+ vs.

Proof of Theorem 6.3. Throughout, we assume we are on .7 . By the Basic Inequal-
ity

IXB —£13/n+ AlIBIl < 0llB = B*[l1 +A11B" 1+ |XB" —£]3/n.

So
IXB =113 /n+ Al Bsc [l + AllBgn [l + A1l Bs, o 11

< Aol 1+ Aoll B — B 1 + Aol guo

B+ (A4 20) 1B, o 1 + IXB* €[/

Take the term A || 3siub |l1 to the right hand side, and use the triangle inequality
A[Bgsun [t = Al Bgguo ll1 < All By — Bgun [1-

Moreover, take both terms Ag||Bsc||1 and A{)”B\S*\Siub |1 to the left hand side. This
gives A . .

IXB =113 /n+ (A = 20) | Bse 1 + (A = 20) | Bg. gun |1

< (A+20) [ Bggws — Bgan 11+ (A +20) 1By, o1 +1XB* —£°]13/n.

Now, on the left hand side, use the inequality

1B s — B sulln < 1B, ssnll s + 1B ol
‘We then obtain

IXB — 1/ + (A~ 20) | Bssmyc — Bgumy

< (A +20) | Bswo — Bgo 11 +2411By gan 11 +1XB* — )3 /n.

Next, we use our assumption A > 4. We arrive at
4)XB — 113 /n+ 31| B guvre — Blsuore
2 n (S;ub)c (Siub)g 1
< 5A B — Bl + 218, gunll +41XB" ~|/n.

We now invoke the “Case i)/Case ii)” argument. One of the two expressions in the
right-hand side is the larger one. Either (Case i))
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By — By Il = 221185 g 11 +[1XB* |13/,
or (Case ii)
Mg — Bl < 24118, sl + [XB* —£[3/n.
So it must hold that either (Case i))
4XB — 13 /n+ 321 B sy — Blssellt < OA ] Bgyw — Bsan 1,
or (Case ii))
4XB 13 /n+ 32| Bisun)c — Blssoellt < 10A1IB; g 1 +9/XB* —1]13/n,

(or both). In Case i), we can use the same argument as its version in the proof of
Theorem 6.2. In Case ii), we have

4XB — 13 /n+ 3B — B[l < 161 g gunll1 + 12 XB" —£[3/m,

6.3 The setup for general convex loss

The results in this section are based on Loubes and van de Geer (2002), van de
Geer (2007) and van de Geer (2008). We extend the framework for squared error
loss with fixed design to the following scenario. Consider data {Z;}!_,, with (for
i=1,...,n) Z; in some space Z . Let F be a (rich) parameter space, and, for each
feF, pr: Z — Rbe aloss function. We assume that F := (F,|| - ||) is a normed
real vector space, and that the map f — ps(z) is convex for all z € 2. For example,
in a regression setup, the data are (for i = 1,...,n) Z; = (X;,Y;), with X; € 2" and
Y; € % C R, and f is aregression function. Examples are then quadratic loss, where

pr(y) = (= £())%
or logistic loss, where

Ps(-sy) = =yf () +log(1 +exp[f(-)]);

etc. See Chapter 3 for more examples. The regression f may also be vector-valued
(for example in multi-category classification problems, or in the case of normally
distributed responses with both the mean and the log-variance depending on a large
number of co-variables). The vector-valued situation however will typically have
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separate penalties for each component. This will be examined explicitly in Chapter
9, for possibly non-convex loss.

We denote, for a function p : Z° — R, the empirical average by

and the theoretical mean by
n
Pp:=Y Ep(Z)/n.
i=1

Thus, P, is the empirical measure that puts mass 1/n at each observation Z; (i =
1,...,n), and P is the “theoretical” measure. The empirical risk, and theoretical risk,
at f, is defined as P,py, and Ppy, respectively. We furthermore define the target as
the minimizer of the theoretical risk

0 p
= argminPpr.
f gfeF Pr

We assume for simplicity that the minimum is attained (and that it is unique for the
|| - ||-norm). The target f° plays the rule of the “truth”, as in the previous section
with squared error loss.

For f € F, the excess risk is

E(f) = Plps— pyo).
Note that by definition, &(f) > 0 for all f € F.

Consider a linear subspace .7 := {fg : B € R’} CF, where the map 8 + fp is lin-
ear. The collection .% will be the model class, over which we perform empirical risk
minimization. When the loss py is a minus-log-likelihood, the situation corresponds
to a generalized linear model (GLM) as described in Chapter 3. The class of linear
functions .# is generally strictly smaller than F. In other words, the model may be
misspecified. Formally, one is allowed to take F = .%, but this can affect our margin
conditions (see Section 6.4 for a definition of the margin condition).

Let us denote the the best linear approximation of the target £ by
0 . 0 L .
Jfeim = fﬁgLM’ Beim = argrrganfB.

Throughout this chapter, it is tacitly assumed that the approximation error & ( fgLM)
is “small”. Again formally, this can be achieved by taking .# = F. Thus f° and fgLM
may be different, but very close in terms of the excess risk, and typically, £ is the
target of interest with good margin behavior. In the case of squared error loss with
fixed design, one may without loss of generality assume that f0 = fgLM and thus
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é( fgLM) = 0 (as, by Pythagoras’ Theorem, the margin remains quadratic near the
projection of ¥ on .%).

The Lasso is’ R
= argrrgn{Pnpfﬁ + 2Bl }- (6.9)

We write f = fﬁ,. We will mainly examine the excess risk &'( f ) of the Lasso.

The program for the rest of this chapter was already sketched in the introduction. Let
us briefly recall it here. In the next section (Section 6.4), we introduce the so-called
margin condition. This condition describes the sensitivity of Pps to changes in f €
(F,|| - ||), locally near £°. In Section 6.5, we consider the case where p is relatively
small, as compared to n, so that no regularization is needed. The result serves as
a benchmark for the case where p is large, and where the above /;-regularization
penalty is invoked. After presenting a general consistency result in Section 6.6, we
investigate more refined oracle inequalities, imposing further conditions. In Section
6.7, we show that the Lasso behaves as if it knew which variables are relevant for
a linear approximation of the target f°, assuming a compatibility condition. Section
6.8 examines the /,-error 1B — B g for1 <g<2.

In (6.9), the /;-penalty weights all coefficients equally. In practice, certain terms
(e.g., the constant term) will not be penalized, and a normalized version of the ¢;-
norm will be used, with e.g. more weight assigned to variables with large sample
variance. In essence, (possibly random) weights that stay within a reasonable range
do not alter the main points in the theory. We therefore initially consider the non-
weighted /;-penalty to clarify these main points. The weighted version is studied
in Section 6.9. Here, the weights are assumed to be within certain bounds, or to be
zero. In the latter case, ideas of Section 6.5 and Section 6.7 are combined.

In Sections 6.10 and 6.11, we return to squared error loss with fixed design. Section
6.10 studies an adaptively weighted penalty, where the weights may be based on an
initial estimator (the adaptive Lasso). Section 6.11, replaces the ¢1-penalty by an £,-
penalty, with 0 < r < 1. These two sections still only consider prediction error. The
results are to be understood as complementing the results on selection of variables
in Chapter 7.

The compatibility condition is also of interest when comparing the properties of
the sample covariance matrix with those of the theoretical one. In fact, one may
generally replace the norm used in the compatibility condition by an approximation
(see Section 6.12, Corollary 6.8).

Finally, Section 6.13 examines under what circumstances the compatibility condi-
tion is met.

3 More generally, the minimization may be over 3 € % where % is a convex subset of R”. All B’s
considered (in particular the oracle”) are then restricted to lie in Z. (For the linear model with
squared error loss, the subset Z need not be convex in order that the theory goes through.)
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Throughout, the stochastic part of the problem (involving the empirical process:
see below) is set aside. It can be handled using the theory in Chapter 14. In the
current chapter, we simply restrict ourselves to a set .7 (which may be different in
different sections) where the empirical process (defined in the particular context of
that section) behaves “well”. This allows us to proceed with purely deterministic,
and relatively straightforward, arguments.

We now give some details concerning the random part. The empirical process is
defined as

{vn(ﬁ) = (P, —P)pys,: B eRP}. (6.10)
By the definition of B we have for any %,

Ppyy + MBI < Py + AIB[1.

We can rewrite this, in the same spirit as the Basic Inequality for the case of squared
error loss (see (6.6) in Subsection 6.2.3). This gives

Lemma 6.4. (Basic inequality) For any 3*, it holds that
E(fp)+AlIBIh < - Vn(B)_Vn(ﬁ*)} +A[B* 1 +E(fp+)-

The proof is left as exercise (Problem 6.5).

The Basic Inequality implies that again, we need to control the behavior of the
increments of the empirical process [V, () — v, (B*)] in terms of || — B*||1.

Let us briefly discuss the least squares example, to clarify the various concepts.

Example 6.1. Least squares with fixed design Let Z; := (X;,Y;), X; € 2" a fixed
co-variable, ¥; € R a response variable, and

Yi:fO(Xi)+8[, izla"'ana

where €1,...,€, are i.i.d. </V(07c72)-distributed (say). The target is now the re-
gression function fo : 2 — R, which we considered as an n-dimensional vector
9= (f2(X1),..., f°(X,))7 in the previous section. The linear space is

F ={fp()= iﬁj%(% B eR”}.
j=1

In the previous section, we assumed that X; € R” and took y; (X;) := Xl-(j ), the j-th
component of X; := (X -(1), . ,Xl-(p )). More generally, the space 2~ can be arbitrary,

1
and the functions y; are given base functions (often called feature mappings, and

the collection {l,l/j}’;:l is often called a dictionary).
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The squared error loss is
pr(x.y) = (y=f(x)?
and the empirical risk is

n

6 Theory for the Lasso

By =Y (5= f(X)) = €e/n—2(e.f — )t I~ /I,

i=1
where we use the notation

(6. Pui=1 Y &/ (X) = €"t/n

i=1
and
2 _Ix o 2
1=~ 3 7 () = [£l]2/m,
i=1
with € and f being, respectively, the vectors

£ f(X1)

E = : ’f:

& F(X,)

Thus, for f a function on 2", || f|| is its L, (Qy)-norm, with Q, the empirical mea-

sure of the co-variables {X;}" . The theoretical risk is

1 n
Por =, LEW— (X)) = 0*+1f = £l

The excess risk is
E(f)=Plps—pp) ==l

Finally, the empirical process is

6.11)

Va(B) == (B = P)pyy = e'e/n—c* -2 iﬁj(87‘l’j)n+2(87fo)n'
=1

J

Note thus that its increments are

Vn(ﬁ*) _Vn(ﬁ) =2

o

1

J

(B = Bi) (& ¥))n,

which corresponds for f* = B to the empirical process part (6.1).

Returning to general loss functions, we recall that we assume that f +— p is convex.

This will be used in the Basic Inequality as follows. Let for some 0 <7 < 1, B =
tB +(1—1)B*. Invoking that the £;-penalty is also convex, and that the map 8 > f
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is linear, one easily checks that the Basic Inequality remains to hold, with B replaced
by . Choosing
t:= M
M+ |[B = B[
for some M* > 0 gives ~
1B—=B s <M".
We apply this with a fixed value for M*, which will depend on the behavior of
the “oracle” B*. It will be assumed that this value is sufficiently small. Then we
have the Basic Inequality, locally, i.e., we are already within ¢;-distance M* of 5*.
As we will show, a consequence is that we need not control the empirical process
[Vu(B) — vu(B™)] globally, but only the local supremum

Zy-:= sup  |vu(B) = Vva(B7)I-
18—B* [l <p*

6.4 The margin condition

We will make frequent use of the so-called margin condition (see below for its def-
inition), which is assumed for a “neighborhood”, denoted by Fj,c,, of the target
f9. This neighborhood is typically with respect to some distance which is stronger
than the one induced by the norm || - || on F. (In fact, we usually take an Le.-
neighborhood.) Some of the effort goes in proving that the estimator is indeed in
this neighborhood. Here, we use arguments that rely on the assumed convexity of
f+ py. Thus, the convexity is actually used twice: it is exploited to show that the
stochastic part of the problem needs only to be studied locally, near the target, and
to show that the (deterministic) margin condition is only needed locally.

The margin condition requires that in the neighborhood Fjoc, C F of fO the excess
risk & is bounded from below by a strictly convex function. This is true in many
particular cases for an L..-neighborhood Fioear = {[|f — f°|| < N} (for F being a
class of functions).

Definition We say that the margin condition holds with strictly convex function G,
if for all f € Fioca, we have

E(f) = G(If =171

Indeed, in typical cases, the margin condition holds with quadratic function G, that
is, G(u) = cu?, u >0, where c is a positive constant. For example, for the case of
quadratic loss with fixed design, we may take ||| = | - ||, and G(u) = u? (see
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(6.11)). More generally, G is of the form G(u) = G;(u*) with G| convex, which
means that identification can be worse than the quadratic case.

Let us now consider further regression examples.

Example 6.2. Suppose that {Z;}"_ | :={(X;,Y;)}!_, arei.i.d. copies of a random vari-

able Z := (X,Y). Let Q be the distribution of X, and let (F, || -||) C L2(Q) be a class
of real-valued functions on 2. Forx € 2" and y € ¢/, let the loss be of the form

pr(x,y) = p(f(x),y), fEF.

Set
l(a,)=E(p(a,Y)|X="),acR.

We moreover write [7(-) :=[(f(-),-). As target we take the overall minimizer

fO(-) :=argminl(a,-) .

acR

Now, fix some x € 2. If I(a,x) has two derivatives (with respect to its first ar-
gument) near ap := f°(x), and if the second derivatives near ag are positive and
bounded away from zero, then /(a,x) behaves quadratically near its minimum, i.e.,
for some 7(x) > 0, some constant 1 > 0, and all | f(x) — fO(x)| < 7,

Lp(x) = Lo () > T()| £ () = () .

We now assume this to hold for all x, i.e., that for some strictly positive function 7
on 2

() =1o() = 2O = POR VI =l <. (6.12)
Consider two cases.

Quadratic margin Assume that the function 7(-) defined in (6.12) has 7(-) > 1/K
for some constant K. Then it follows that for all || f — f°||. <7,

E(f) =clf =17,

with c = 1/K.
General margin Consider functions

Hi(v) <vQ{x: t(x) <v},v>0,
and

Gi(u) =sup{uv—H;(v)}, u> 0.

v>0

Lemma 6.5. Assume (6.12). For ||f — f°|| <0, the inequality

£(F) > n’Gy (npf - pfo||2/n2)
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holds.

Proof. By (6.12), we have, for any v > 0,
£(f) =P(ps—pp) > [ 1lf ~ 1°PdQ

02 02
z/@ﬂf—f | szv/@v—f 2d0
o f— P - nP0fr t) <v)
:n2<Vf—f°||2/n2—H1(V))-

We now maximize over v to obtain the required result. a.

If H,(v) = 0 for v sufficiently small, we are back in the case of locally quadratic
margin behavior. More generally, the Tsybakov margin condition (see Tsybakov
(2004)) assumes that one may take, for some C; > 1 and vy > 0,

H(v) = v(Cw)'7
Then one has
G (u) _ u1+7/C1+Y

where .
C=Cl Ty Ti(1+y).
Thus, the margin condition then holds with

Gu) = n_27u2<1+7)/C1+y.

In the above example, we actually encountered the notion of a convex conjugate of
a function. As this notion will play a crucial role in the oracle bounds as well, we
present here its formal definition.

Definition Ler G be a strictly convex function on [0,00), with G(0) = 0. The convex
conjugate H of G is defined as

H(v)=sup{uv—G(u)}, v>0.

u

When G is quadratic, its convex conjugate H is quadratic as well: for G(u) = cu®

one has H(v) = v?/(4c). So we have

uv < cu® +1* /(4c).
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This inequality was used in the proof of Theorem 6.1 (with ¢ = 1/4), as well as
in the proof of Theorem 6.2 (twice: with ¢ = 3/2 and ¢ = 1/2). More generally,

2(1+y)
for G(u) = cu®'*Y) (y > 0), we have H(v) = dv 172 , where d = (1 +2y)(2(1 +
204y 1
Y))” % ¢ 727, The function H will appear in the estimation error term. We will

see that the larger 7, the larger the estimation error can be.

6.5 Generalized linear model without penalty

This section is relevant when .# is low-dimensional, i.e., when p < n. The idea is
to provide a benchmark for the case where p > n, and where one aims at mimicking
an oracle that knows which variables are to be included in the model.

The estimator in the generalized linear model, that we will study in this section, is

~

b:= argngnPnpfﬁ. (6.13)

We recall that the “best approximation” in the class of linear functions .7 is
o= fro By i=argminPp
GLM -— Jg2 > PGLM - B /g

and that the excess risk & (fo; y)> can be regarded as the approximation error due
to considering a (generalized) linear model. To assess the estimation error of b, we
assume the margin condition with strictly convex and increasing function G (with
G(0) = 0). We moreover assume that G satisfies, for a positive constant 19,

_ .. G(8/4)
di=, TG

>0. (6.14)

Condition 6.14 holds for power-functions, so in particular it is met when G(u) = cu®
is quadratic. In the latter case
oy =1/16.

For all 6 > 0, we define the random variable

Zs:=  sup  |va(B) = Va(Bim)|/v/P:

Ifp=1mll<8
where v, (-) is the empirical process (see (6.10)). Consider for a fixed 8° the set

T ={Zs <28°}, (6.15)



6.5 Generalized linear model without penalty 123

for a suitable A. Under general (moment) conditions, and for each (sufficiently
small) &, the random variable Zg is concentrated near a value of order §/+/n (see
Section 14.8, Lemma 14.19), so then the choice A = 1 /+/n equips the set .7 in
(6.15) with large probability. We take the particular choice §° := G~ (), with £°
given in (6.16) below.

Example 6.3. (Least squares with fixed design) In this reference example, one may
without loss of generality assume 30 = ﬁgLM, and f0 = fgLM. Then, when taking

ns

Zs=  sup 2|(e,fp — fgo)nl/v/P
”fﬁ*fﬁollnfﬁ

= sup 2|(e, y)a(B—B°)I/V/p.
(B=B%)TE(B—B0)<8?
Here, v := (y1,...,¥,), and

ﬁ:/WW&

is the Gram matrix. Assuming £ has rank p (actually without loss of generality, as
when rank(ﬁ) =r < p one may replace p by r), we may reparametrize, showing that
without loss of generality we may assume that the y; are orthonormal in L,(Q,),
i.e., that £ = I. Now, define Vii=+/n(e,¥j)p, j=1,...,p. Then Vi,...,V, are i.i.d.
A(0,0?), and

(e, w)a(B—B")v/pl = VI (B—B")I//np

< VI211B = B°ll2/vap = V|12l f5 = fgolln/v/nP-
So
Zs5 <2||V|26/\/np.
Moreover, [|V[|3/0? is x;-distributed. So, for instance, we can bound the second

moment of Zs by
EZ} < 406%5%/n.

Hence, to take care that .7 has large probability, we can take A = 2rc /+/n with
some large value for 7, as

1><Z5 > (Zm/\/ﬁ)S) < %2

(See Lemma 8.1, for exponential probability bounds for 2 random variables.)

Let H be the convex conjugate of the function G of the margin condition. Let A > 0
be the constant employed in (6.15) to handle the empirical process. Define
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2812 21
&= 20U |y (2AVP) (6.16)
0o (04

The first term in (6.16) is - up to constants - the approximation error, and the second
term may be seen - up to constants - as the estimation error.

Lemma 6.6. Let b be given in (6.13), and let T := fp- Assume the margin con-
dition with G satisfying (6.14) with constants o and Mo, where Mg > 89 with
8% := G (€"). Assume that fQ;; is in the neighborhood Fioea of the target f°,
and also that fg € Fioca for all B satisfying || fp — 1ol < 8°. Then, on the set 7
defined in (6.15), it holds that

A

E(F) < ape® =26 (fE ) + wH (T) .

The assumption fj € Fioca for all || f5 — £ || < 8° actually requires that the func-
tions that are in a local || - ||-environment of £ for are also in Fiyey Which is typically
an || - ||-environment. Again typically, the assumption depends on the dictionary
and on how large 8 is. Such requirements on the connection of norms are more
detailed in e.g. van de Geer (2002).

If the linear model is assumed to hold exactly, there is no approximation error, i.e.,
then & (f3; ) = 0. The excess risk is then bounded on the set 7 := {Zg < 18°},

where §° = G (H(2A/p/ a)), by

R 22/P
E(f) < apH <%> .

Quadratic margin In the case G(u) = cu?, we have H(v) =v?/(4c), and ap = 1/16
so that we get

e —16(2f8LM £+ 162 ”)

50 =\ Jevye,

and

and on .7,

Asymptotics As noted above, generally one can take A =< 1 /+/n (see Section 14.8,
Lemma 14.19, and see also Example 6.3). This means that under quadratic margin
behavior, the estimation error H(2A,/p/ &) behaves like p/n.
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Proof of Lemma 6.6 Let 50

= ——————,
8% +[f - fEpmll
and B := b+ (1 — 1) B - Write f:= fp- &= &(f), and £ := &(f2 ). Then
by the convexity of f + py,
Bapp <tBapp+(1=0)Pappo < Fappo .

Thus, we arrive at the Basic Inequality

& == vn(B)~ vuB8ua0) | + ooy~ )+ 60 < = v~ i Buan)| + €°.

(6.17)
Soon .7 o
& < A/p8°+&°.

Now, by the definition of the convex conjugate, it holds that uv < G(u) + H(v), for
all positive u and v. Apply this with u := 8% = G~!(€°) and v := 21 ,/p/ 0%, to find

& < ope )24 apH(2A\/p/ ) /2 + E° = ape®, (6.18)

by the definition (6.16) of £°. So, by the margin condition, and using that f € Fca1,
we get by (6.14),

17—l <G (&) < G (ape®) < 8°/4.
Also, as by the definition of el &0 < 0(080/2 < O(()SO, so that
1f8m — O <G1(E%) < 6 (awe®) < 8%/4.

Thus we have shown that
IF = faumll < 8°/2.
But
SO — fSmll
80+ [If — fBumll
So ||F — f3 mll < 8°/2 implies [T — £\l < 8°. Repeat the argument, with f re-
placed by f, to arrive in (6.18) with & replaced by & := &(F). O

||f—f8LMH :tHlAc—fgLM” =
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6.6 Consistency of the Lasso for general loss

We return to the Lasso estimator ﬁ defined in (6.9), and let f := fﬁ' We first show

consistency (in terms of the excess risk &'( f)) Consistency is a rough result, in
particular, it requires neither the margin condition, nor any compatibility condition.

Here, and throughout the rest of this chapter, we use the notation (for M > 0),

Zy:= sup [Va(B) = Va(B), (6.19)
IB=B< I <M

where 3* is fixed, and may be different in different sections. Sections 14.8 and 14.9
show that (under some conditions), with large probability, the empirical process
increment Z,; is proportional to M. That is, for a value A9 depending the confidence
level 1 — a, as well as on the problem considered, we prove that for all M sufficiently
small*

see Section 14.8, Lemma 14.20 and Theorem 14.5.
Lemma 6.7. (Consistency of the Lasso) Let
B = argﬂ;jin{g(fﬁHMlﬁlll}, (6.20)

and f* = fg+. Take Zy as defined in (6.19), with the value (6.20) for B*. Define

M= %{(f(f*mauﬁ*nl}.

and let
T = {Zny < MM}, 6.21)

where

420 < L.

Then on the set 7, we have
EF)+ MBI <2{E(F*)+241B |11 }-
Hence, if the target f0 = fﬁo is linear, this gives

EF)+ B <4r|B,

4 The probability of the set {Zy < MM} generally does not depend on f*. However, the set
{Zy < oM} itself generally does depend on 3* (with an exception for the case of squared error
loss with fixed design), so considering several f*’s simultaneously typically reduces the confidence
level of our statements.
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and more generally, for the best linear approximation
0 . 0o . .
Joum = fpo, .+ Bom = argnganfﬁ,

we have . .
EF)+ B < 2{E(form) +2A1Bmll1}-

We stress that it typically pays off to use the smallest possible value M* in the
definition (6.21) of .7 (because typically, the smaller M*, the easier it is to handle
the probability of .7).

Asymptotics As follows from Section 14.8 and Section 14.9, under general condi-
tions one may take Ay =< /log p/n. Choosing A of the same order as A, one sees
that the Lasso is consistent (in terms of prediction error), if &(f*) = o(1) and if in
addition ||B*||1 = o(y/n/logp). In other words, the consistency result for squared
error loss with fixed design (see Lemma 6.1) lets itself be extended to general con-
vex loss.

Proof of Lemma 6.7. This again follows quite easily from the Basic Inequality.
Define
t:= M
M+ |[B = B[

We use the short-hand notation B :=tB+(1—1)B*. Then || — B*||; < M*. De-
fine & := é"(fﬁ), and &* := &(f*). Then, as in (6.17), we may apply a convexity
argument to obtain

E+ MBI < Zage+ "+ A[B 1. (6.22)
So if Zy+ < AgM*, we have

E+A|BI < AM*+ & +A[B||r-

But then
~ ~ N N N . . M*
E+AlIB— Bl < AoM" + & + 24 B[ =220M" <A—-.
This implies
~ y M*
1B—B*h < 5
which in turn implies R
BBl <M.

Repeat the argument with B replaced by B, to find

EF) MBI < oM™ +E+A[B* |1 < 220M".
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O

6.7 An oracle inequality

Our goal in this section is to show that the Lasso estimator (6.9) has oracle proper-
ties. We hope that the target f° can be well approximated by an Jp with only a few
non-zero coefficients f; (j = 1,..., p), that is, by a sparse J/p- Recall that a natural
choice would be to base a penalty on the number of non-zero coefficients

Sg = ‘Sﬁ‘, Sﬁ = {] ﬁj;ﬁO}.

Remember also that sg can be regarded as ||B |7 := ):;’.=1 |B;]9, with ¢ = 0, which is
why penalties based on sg are often called £-penalties. In our context, the £o-penalty
takes the form H (A VS5/9(Sp)), where A is a regularization parameter, ¢2(S) is a
compatibility constant, and H is the convex conjugate of G. This is inspired by the
benchmark result of Section 6.5. Indeed, for S C {1,..., p} a given index set, write,
as before,

Bis:=BUHj€S} j=1,....p,

and consider the estimator, restricted to 3’s with only non-zero coefficients in S:

bS = arg min P,p+, .
p=ps "

Write fg := fjs- Restricted to fs’s, the best approximation of the target fOis fg =
fps, where
b’ := arg min Ppy, .
B=ps P

In view of Lemma 6.6 one has, under general conditions, on a set with large proba-
bility, the inequality

& (ts) <28 (fs) + aoH (W) .

Choosing the best index set S amounts to minimizing the right-hand side over S €
<, for a suitable, hopefully large collection of index sets .. For the interpretation
of the oracle we will use, it may be helpful to recall that

min {Zg(fg) + oH <m> }

Ses Qp
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i 255
= min {Zé"(fﬁ)Jr(XoH( “ >}

ﬁ: SﬁE&ﬁ

In summary, our goal is to show that for f = fﬁ’ with ﬁ the Lasso estimator,
one mimics the above minimizer, with large probability, accepting some additional
log p-factors and/or constants from a compatibility condition.

Indeed, we need a compatibility condition to deal with the ¢;-norm || - ||; on the one
hand, and on the other hand the norm || - || on the vector space F.

Definition We say that the compatibility condition is met for the set S, with constant
0(S) >0, if for all B € RP, that satisfy ||Bsc||1 < 3||Bsl|1, it holds that

IBsIIT < I1/5117151/9>(S).

More details on this condition are given in Section 6.13.

Definition of the oracle We define the oracle B* as

B* = argﬁ:rglﬁigy{?aéa(fﬁ)—&-ZH (‘z‘(}/ﬁ?)} (6.23)

where Sg := {j: Bj # 0}, and where sg := |Sg| denotes the cardinality of Sg.

This is the generalization of the oracle defined in (6.7) (for squared error loss with
fixed design) to general loss and design.

We again use the short-hand notation S, := Sﬁ*, and ¢, = ¢(S.), and we set [* :=
fp+- Thus, B* = b+, where

Sy = arg;relg% {3£(fs) +2H (ﬁ;@) }

The minimum is denoted as

26" =38 (f5) +2H (T) .

*

We let Zy; be given as in (6.19), but now with the newly defined B*, i.e.,

Zy = sup  [Va(B)—=Va(B7)l- (6.24)
1B—Blli <M

with the value (6.23) for B*. Set

M*=€*/ A. (6.25)
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and
T ={Ly < MM} ={Zy < e"}. (6.26)

Here, the idea is again to choose Ay in such a way that this set .7 has large proba-
bility: see Section 14.8 and Section 14.9.

Theorem 6.4. (Oracle inequality for the Lasso) Assume the compatibility condition
forall S € .. Assume the margin condition with strictly convex function G, and that
I € Fiocal for all ||B — B*||1 < M*, as well as f* € Fioca. Suppose that A satisfies
the inequality

A > 8. 6.27)

Then on the set 7 given in (6.26), we have

2 A * * sk 42* Sy
S+ AR -l < e =6 () +arr ().
The condition fg € Fioca for all || — B*[[; < M* is again, typically, a condition
on the connection between norms, as in Lemma 6.6. We note that || — *||; < M*
implies || fg — fp+ |- < M*K, where

K := 1
[rax il
This means that typically (with Fjocy being an || - ||-neighborhood) we need K < oo
(but possibly growing with n and/or p, depending on how large M* is). See Example
6.4 for the details in the case of logistic regression.

Corollary 6.3. Assume the conditions of Theorem 6.4, with quadratic margin be-
havior, i.e., with G(u) = cu®. Then H(v) = v* /(4c), and we obtain on .7,

161425,

)+ AIB =B <6807+~

The definition of the oracle f* allows much flexibility, in the sense that the choice
of the collection .7 is left unspecified. We may apply the result to the best linear
approximation

fgLM = fﬁgm’ ﬁgLM = argmﬁianfﬁ,

Suppose that So.gLm := S B satisfies the compatibility condition. Then we obtain
under the conditions of Theorem 6.4, with .% := {So aLm},

40/ SO.GLM|>

&(f) +7L||B —Bmlh <6E(fE M) +4H
0 (So.cLm)
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This thus gives a bound for both the excess risk &(f), as well as the ¢;-error
1B = Bérmlli- If the target f© = fgo is linear, one has f = fg; ;. i.e., then the
approximation error & (f; ;) vanishes.

In order to improve the bound for the excess risk &(f), one may choose to minimize
over a larger collection .. One then ends up with the ¢;-error || — B*||1, between
the estimator [ and the less easy to interpret §*. But again, a triangle inequality

1B~ Bémllt < 11B =Bl +11B* — Bermll1,

can overcome the interpretation problem (see Problem 6.4).

Asymptotics We generally can take Ay =< 1/log(p)/n (see Section 14.8 and Section
14.9). Taking A also of this order, and assuming a quadratic margin, and in addi-
tion that ¢, stays away from zero, the estimation error H (44 ./s./¢.) behaves like

s« logp/n.

Proof of Theorem 6.4. Throughout the proof, we assume we are on the set .7 .

Let, as in the proof of Lemma 6.7,
t .= M
M+ B —B*[lr

We again use the short-hand notation f§ := 7 + (1 —7)B*, and & := &(fp), & =
& (fp+)- Then, as in (6.17), a convexity argument gives the Basic Inequality

E+ MBI < Zu +E +A[B* |1 < AoM* + & +A[|B* |- (6.28)

Now, for any f3,

B = Bs. + Bs:,
Note thus that S5, = 8" and g =
So we have
E+Al|Bsc It <& + & +AllBs, — B[l < 26" +Al|Bs, — B (6.29)
Casei) If

AlBs.— B = €,
we get from (6.29), that

MBsgll < 2€"+ 2| Bs, — Bl < 3211Bs. — Bl (6.30)

3 In connection with this, we remark that one may for instance want to choose .¥ to contain only
subsets of So gLm. The oracle is then not allowed to choose non-zeroes where the best approxima-
tion has zeroes .
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This means that we can apply the compatibility condition.

We find ~
1Bs. = B*lh < Vsl f = 71/ 9
Thus _ .
E+A1Bsc I + 4| Bs. — Bs. I

< MM* 4+ E* 4225, || f = f¥1I/ 9

Now, because we assumed f* € Fjoc,, and since also f € Fiocal, We can invoke the
margin condition to arrive at

AV F=frll/e" <H (%) +&/2+E)2.
It follows that
E+ BB SMM*+3£*/2+H(‘M(;/§> +&)2

<AM* € +E&)2 =2AM* + &2 =2¢" + &2,

or
E/2+ BB < 26" (6.31)
This yields
< 20 M*
— B < =M< —
1B =Bl < Zom" < 5

where the last inequality is ensured by the assumption A > 8¢ > 4. But || —
B*|li <M*/2 implies
1B =Bl <M".
Case ii) If ~
AllBs, —B*[l1 <€,

this implies B
E+A|Bs: [l < 3¢,

and hence } _
E+AB—B I <4e7, (6.32)
so that P Y
» 8* *
— B <4—=4"M"< —
1B <45 =42mr <2,

since A > 82. This implies that ||} — B*||; < M*.

So in both cases, we arrive at ||B — Bl < M*.
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Now, repeat the above arguments with B replaced by ﬁ Then, with this replacement,
either from (6.30) we can apply the compatibly assumption to arrive at (6.31) (Case
i)), or we reach (6.32) (Case ii)).

O

Example 6.4. Logistic regression

As an illustration, with characteristics shared by various other examples, we exam-

ine the logistic regression model. Suppose {(X;,Y;)}”_, are independent copies of

(X,Y), with X € 2 and Y € {0, 1}. The distribution of X is denoted by Q, and we
let F = L,(Q), so that || - || is the L,(Q)-norm. The logistic loss is
Pr(y) = p(f(-),y) = =yf () +log(1 +exp[f(-)]),
see also Section 3.3.1. Define
n(-):=PY=1X=").
Then forx € 2,

l(a,x) :=E(p(a,Y)|X =x) = —n(x)a+log(1+expla]),

o=toe( 205

Therefore, we take f© :=log(m/(1 — 7)) as target. To check the margin condition,
we consider the second derivative

. d2 e e
(@)= falle) = 1oz (1~ Trar)

Let Fjoeq be the neighborhood Fioca := {||f — fOl= < n}.

which is minimized at

Lemma 6.8. Assume that for some constant 0 < & < 1,
& < 7'[()6) <1—g, Vux, (6.33)
and furthermore, that for some constant K,

Il < K.
ggﬁgp\l%ll <

Take, for some constant L, 81y < A < LAy. Suppose that

2 2
8KL (enn/go—|—1) /'L({;;* <1 6.34)
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6.4 are met, and on 7, we have

and that || f* — f°)|. <1 /2 and &(f*) /Ao < N /4. Then the conditions of Theorem

16A%s. (e /eg +1)?

E(N)+ 2B =Bl <66 (fye)+ Y

We can relax condition (6.33), but then the margin is possibly no longer quadratic
(see Example 6.2). One furthermore sees that in logistic regression, the loss func-
tion p(f,y) is Lipschitz in f for all y. This will greatly facilitate the handling of the
set .7, namely, it allows one to apply a so-called contraction inequality (see Theo-
rem 14.4). By Theorem 14.5 of Section 14.8, under the conditions of Lemma 6.8,
and with the additional normalizing condition that ||y;|| <1 for all j, we have the
probability inequality
P(7) > 1 —exp|—],

K tK 2t K
(= — 4/ 241 =
l<3,n,p>+3n+ . —|—81<3,n,p>],
)L<K’n7p) . [ 2log(2p) | Klog(2p)

3 n 3n

Proof of Lemma 6.8. For f € Fy,

for

Ao =

where

[(f,) > (14 1)72 > (e /gy +1) 2.
Hence, the quadratic margin condition holds, with G(u) = cu?, where
c=(e"/g+1)2
For || — B*||1 < M*, we have
g = f"lleo < KM,

and hence
£ = F2llo <M /2+KM".
Now,

c

2
M =& [l =26 (fi) Ao+ =3 /2,

Condition (6.34) ensures that
KM* <n/2.
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6.8 The {,-error for 1 <g <2

Theorem 6.4 provides us with rates for the ¢;-error |8 — *||1, which in turn can be

used to derive rates for (for instance) || — By 1, where BS; \; are the coefficients
of the best linear approximation of f° (see also Problem 6.4).

To derive rates for || — B* |4 (and B — B mllg), with 1 < g <2, we need a stronger
compatibility condition.

For .4/ D §, and L > 0, define the restricted set of 3’s

BLS,N) = {IIﬁscll < LlBslls, 1Byl < min |ﬁ,»|}.
JENS

If 4" =S, we necessarily have .#"\S = 0. In that case, we let minjc_y\ g |B;| = c°.

The restricted eigenvalue condition (Bickel et al. (2009); Koltchinskii (2009b)) is
essentially the following condition.

Definition Ler S be an index set with cardinality s, L be a non-negative constant,
and N > s be an integer. We say that the (L,S,N)-restricted eigenvalue condition
is satisfied, with constant ¢ (L,S,N) > 0, if for all ¥ D S, with |.4'| = N, and all
B € %(L,S,.V), it holds that

1By lla <Ilfpll/¢(L;S;N).

For the case where we only have a linear approximation of the truth, we need another
version, which we call the (minimal) adaptive restricted eigenvalue condition.

Define the restricted set of s

Rrip(L. S, N) = {ﬁscnl < Ly3lBsllas 1Brello < min IB/I}-

JEN\S

Definition Let S be an index set with cardinality s and N > s be an integer. We say
that the adaptive (L,S,N)-restricted eigenvalue condition is satisfied, with constant
Qadap(L,S,N) >0, if for all A" D S, with || =N, and all B € Hagap(L,S,N), it
holds that

1By llz < 1/Bl/ Padap (L, S, N).

Definition For S a set with cardinality s, L a non-negative constant, and N > s an
integer, the minimal adaptive restricted eigenvalue is

¢r%lin(LaS7N) = /nglll/r;l:N ¢b\2dap(L7JV7N)'
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The next lemma is our tool to go from the ¢;-norm to an £,-norm (see Candes and
Tao (2007)).

Lemma 6.9. Let by > by > ... > 0. For | <g <o, ands € {1,...}, we have

1/q o s (k+1)s
(Z bi’-) SZ( Z b") <s @D/ p|);.

j>s+1 j=ks+1

Proof. Clearly,
L o (k+1)s Lo (ks L
(Z#) (1) <L(L1m)"
j>s+1 k=1 j=ks+1 k=1

Moreover, for ks +1 < j < (k+1)s,

bj < Z bl/s
I=(k—1)s+1
So
(k+1)s ks q
Y b‘1<s<q'>( Yy bl>
Jj=ks+1 I=(k—1)s
Therefore

o s (kt+1)s F
Z(,Z b?) <y Z b=l

k=11=

6.8.1 Application to least squares assuming the truth is linear

The results in this subsection are from Bickel et al. (2009). Consider the situation
of Subsection 6.2.2. The following results can be invoked in the same way as in
Problem 2.3, to improve variable screening, as discussed in Subsection 2.5.

Lemma 6.10. Assume A > 2Ag. Then on

T = { max 2|e"XV)|/n < 20}

1<j<p

and for 1 < g <2, we have
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(29 +49) 245,

N 0
\W—ﬁnqgaggjaga.

Proof. We showed in Lemma 6.3, that for A > 2, on the set .7,

1Bss Il < 311Bs, — B°II1-

By Theorem 6.1 moreover, on .7,

IX(B — BOI3/n+ Al — Bl < 4A4%50/ 95

where ¢o = ¢(So) > ¢(3,50,2s0). The (3,S0,2s0)-restricted eigenvalue condition
implies that if we take .47\ Sy as the indices of the s largest in absolute value coeffi-

cients |[§j|, j ¢ So,

R 1 4125‘
_ R0|2 - 2 2 < 70
1By =B"llz < $2(3,50,250) (4)“ SO/%) ~ 0*(3,50,250)

So
1By —BOlly < 590 V2B — BOII < /924 /97 (3, S0, 250).-

Moreover, invoking Lemma 6.9,
Boyellg < 5o Bsg 11 < 45y A /08 < 45y A/ $%(3,50,250).
Thus,

29095 49795

BB = ||B .| 3, _ BY7 <

(29 +49)Ads,

- 9%4(3,80,250)

6.8.2 Application to general loss and a sparse approximation of the
truth

Recall from the previous section, that S is the active set of the oracle f* := fg- and
¢. = ¢(S,), and that

26" 1= 36 (fg.) +2H (T) .
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We now define

2¢" :=3&(fp+) +2H (M) .

¢min(3aS*>zs*)

Lemma 6.11. Suppose the conditions of Theorem 6.4 are met. Then on the set T =
{Zy+ < AM*} defined in (6.26), we have for 1 < g <2,

1B — B8 < (49 4295,V (e* /0)1. (6.35)

We remark that when the truth fo is itself linear, i.e., when f0 = fgLM, and one
takes f* = fgLM, then one can replace the minimal adaptive restricted eigen-
value @uin(3,50,2s0) by the (not smaller and perhaps larger) restricted eigenvalue
$(3,50,2s0), as in the case of least squares error loss considered in Lemma 6.10.
One then needs to adjust the arguments in the proof of Theorem 6.4, considering the
sets

{ sup  [va(B) = va(B)I/I1B = B szo}.

IB—B*|l1<M

With the help of the so-called peeling device (see e.g. van de Geer (2000)), one can
show that such sets have large probability.

Proof of Lemma 6.11. By Theorem 6.4,
AIB—B*1 < 4e”. (6.36)

In the proof of Theorem 6.4, we keep f* as it is, and we replace S, by .4/, with
A\S. being the set indices of of the largest |B;], j ¢ S.. We moreover replace

1B+ — B*|l1 by V25.]|B.s — B*||2. Instead of 6.36, we then obtain
MBorel 423/ 25,y —Bl2 < 4e”.
(see also Lemma 6.12 for this line of reasoning). It follows that
1B velly < s~ D9 Bycly < ds™laV/aer /2.

We also have X
1By — B2 < 4e/(A/25.),

and thus
1By —Bllg < (25.) @ 2/CD|By — B2 < (25,) 701/ 94¢ /2.

Hence R
1B—B"a < 475,97 (& J2)7 4 49(25,) 70D (" /A)1

= (1+27 @ D)ga57 @D (g /n)a.
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The following corollary takes f* = f0.

Corollary 6.4. If f* = fpo is linear, we have for ./’ = {So}, under the conditions of
Lemma 6.11, and on 7 defined in (6.26),

) o 40250
_ B0 < (49 4 patlyg @Dy —aga( __ZAVE0 )
1B —BOIIg < (47+27 s, Oumin (3.50,250

2

In the case of quadratic margin behavior, with G(u) = cu=, we then get on 7,

A 8 q
— B < (4142950 | 55—
1B =F7llg < (42702 %0 \ a5 5 20

(compare with Lemma 6.10).

Of special interest is the case g = 2. We present the situation with quadratic margin
behavior.

Corollary 6.5. Assume the conditions of Lemma 6.11, and that G(u) = cu®. Then
on 7 defined in (6.26),

)

B— B2 < 62 *< +
HB ﬁ ||2 — $ lzs* C2¢§]in(3as*72s*

6.9 The weighted Lasso

The weighted Lasso is
A p
ﬁ:argmﬁin Papry +2 Y wilBjl ¢ (6.37)
j=1

where {w j}?zl are (possibly random) non-negative weights. Consider fg(:) =
Z;’:l Bjv;(-), with y; given base functions on 2. Inserting weights in the penalty
is equivalent to a normalization of the base functions y;. The normalization is im-
plicit in the previous sections, namely in the sets .7 considered. Only with a proper
normalization will these sets have large probability.

Suppose that y; = 1, and that the other y;’s are centered. A reasonable choice for
the weights is then to take w; = 0 and, for j =2,...,p,

wi =Py; =67 (6.38)



140 6 Theory for the Lasso

Corollary 6.6 below will deal with zero weights, that is, unpenalized terms. Further-
more, weights that uniformly stay away from zero and infinity, do not require a new
argument. That is, with the weights as in (6.38) (say) on the set

Q:={5<w;<1/8,Vje{2....p}}

with 0 < § < 1 fixed but otherwise arbitrary, one can easily adjust Theorem 6.4,
combining it with Corollary 6.6, with the constant 0 now appearing in the bounds.
We will furthermore show in Example 14.1 (Section 14.5.1, see also Problem 14.4)
that, under some moment conditions, with random design, for the choice (6.38), the
set £2 has large probability.

The situation is more involved if weights can be arbitrarily large or arbitrarily small.
Assuming the truth f0 = Jfpo 1s linear, with active set So, the adaptive Lasso attempts
to make the weights w; close to zero for indices j in Sp, and very large for j not in
So. This means the weights are chosen “adaptively”, a situation which is deferred to
Section 6.10.

The remainder of this section studies the case where certain weights are a priori set
to zero. As pointed out, the constant term is often left unpenalized, and there may
also be other unpenalized terms; say w; = ... = w, = 0 and all other weights are
equal to one. The Lasso then becomes

“ P
B =argmin {Pnpfﬁ 2 Y |Bj|}, (639)

Jj=r+l1

where r < p. One can rather easily see from the proof of Theorem 6.4 that if one
forces the oracle to keep the unpenalized coefficients, there is no additional argu-
ment needed to handle this situation. This gives the following corollary.

Corollary 6.6. Assume the conditions of Theorem 6.4. Suppose the oracle is re-
stricted to sets S containing the indices 1, ..., r of the unpenalized coefficients. Then
on the set 7 given in (6.26), we have for the estimator 3 given in (6.39),

40 \/55 )

¢ )

(g4 AP - Bl < de” =65 )+t

Again, when the penalty is a weighted version ):;.’:r +1Wj|Bjl, with the non-zero
weights w; bounded away from zero and infinity (with large probability), the theory
goes through with no substantial changes.

If none of the coefficients are penalized, we are back in the situation of Section
6.5 (assuming p < n). Comparing the result with those of Section 6.5, we see that
we now rely on the perhaps restrictive compatibility condition, and that the result is
possibly less good, in the sense that 1 < A (i.e., we generally now have a superfluous
log-term).
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Also with some penalized coefficients, the above corollary does not always give the
best result. With squared error loss, one may use projection arguments. For instance,
centering all y; makes them orthogonal to the constant term. More generally, one
may want to choose the {y;}/_, | orthogonal to the {y;}’_;. In the least squares
case, one can then simply separate the estimation of the {3 j};'=1 from the estimation
of the penalized coefficients {f; ?:r 41 (see also Problem 6.9). In other situations,
this is however not always possible.

An extension occurs when there are additional “nuisance” parameters, which do
not occur as coefficients in the linear model, but rather nonlinearly (and which are
not penalized, say). With the above approach, assuming some smoothness in the
nuisance parameters, such a situation can be incorporated as well. More precise
derivations for possibly non-convex models are given in Section 9.4.

6.10 The adaptively weighted Lasso

We again look at squared error loss (other loss can be treated similarly), and con-
sider, as in Section 6.9, the weighted Lasso

R 1 14
Bweight = argrrbin { 0 Z(Yi — /B (Xi))2 + ﬂdnixlweight Z Wj\ﬁj| } )
j=1

i=1

where {w; }?zl are (possibly random) non-negative weights. This section is tailored
for the situation where the weights may be chosen depending on some initial esti-
mator, as is for example the case for the adaptive Lasso (see Section 2.8 and, for
further theoretical results, Sections 7.8 and 7.9). This generally means that the reg-
ularization parameter Ajyj; is of the same order of magnitude as the regularization
parameter A for the standard Lasso. An appropriate choice for the regularization
parameter Aycighe depends on the (random) weights (see (6.40)).

Fix A9 > 0 and define

T = { max 2|(&, ¥j)n| gl{)}.

1<j<p

For sets S C {1,...,n} we define

Iwsll2:= /Y w3, wit™ := minw;.
jes Jj#s

Let us recall the definition of the adaptive restricted eigenvalue (see Section 6.8).
For L >0, 4 D S, we define the set of restrictions
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Rodap(L,S, N ) = {/is*flll < Lvs||Bsll2, IByelle < min |ﬁ/|}-

JENS

Definition We say that the adaptive (L, S,N)-restricted eigenvalue condition is sat-
isfied, with constant Qaqap(L,S,N) > O, if for all ¥ D S, with || = N, and all
B € Padap(L,S,.N), it holds that

1By ll2 < (17 11/ Padap (L, S, N).

The following lemma is proved in the same way as Theorem 6.2. It essentially re-
duces to Theorem 6.2 when one takes A,, = 1 and w; = 1 for all j. The adaptive re-
stricted eigenvalue condition is however somewhat stronger than our “usual” com-
patibility condition. See Section 6.13 for the relations between various restricted
eigenvalues and the compatibility condition.

Lemma 6.12. Suppose we are on 7. Let Ainiy > 2A0. Let S be a set with cardinality
|S| := s, that satisfies .
Lwge™ > [lwsl2/V/s,

and
)yweight(HWSHQ/\/E/\W_rg‘}m) > 1. (6.40)

Write fwcight = waeigm' For all B we have

waeight - fO”% + 2'init)vweight Z Wj‘Bweight,sz

J¢S
1402 A2
<2l fps — 212+ et w3,
Ps " 02, (6L,5.5)
and . .
AinitAweight [ W2 ]| (Bueigne)s — Bsl2 + AinicAweight Y, Wl Bweight,
J¢S
TAZ A2 o
< 5)Ifps — LON2+ 5 w3
s " 92y (6L.S.5)

Note that by (6.40), the bound for the prediction error of the weighted Lasso is

always at least 1423, [S|*/¢2,0 (6L,S, ) (compare with the prediction error for the

initial Lasso, and compare also with Condition C in Section 7.8.6).

Proof of Lemma 6.12. We have on .7

p A
waeight - fOHﬁ + 2'init)vweight Z leﬁweight,j|
=1
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< ||f/35 - fOHI% JraO”ﬁweight - B Hl Jr)I'initszeight Z Wj|ﬁj|a

jes

and hence .
waeighl - fOHi + 2'ini[lweight Z "V/"ﬁweight,jl/2
J#S
< |1 £gg = ON12 + 3inicAweigh s |2 ]| (Bueight)s — Bsll2/2-
Casei) If
s — 2112 < 3initAweigh |Wsll2 ]| (Bueight)s — Bsll2/2

we get
|| Feigne—f°|IZ + AinitAweight Y Wj|Bwe1ght,j|/2 < 32&nit;\'weight”WS”Z”(Bweight)S —Bsl|2-

jEs
(6.41)
It follows that

||(Bweight)sv Ih < 6L\/§||(Bweight)s —(B)sll2-

But then X
lws||2]| (Bweight)s — Bs||2

< ||WS||2||fweight - fﬁs Hn/¢adap(6LaS7s)

< ||WSH2Hwaeighl *f0||n/¢adap(6L,Svs) + ”WS”ZHfﬁS *]A)Hn/d)adap(6LaS7s)~
This gives .
waeight - fOHﬁ + 2'inil)L'weight Z Wj‘ﬁweight,jl/2

¢S
< 3inicAweight|[ W2 || Aveight — °[|n/ Padap (6L, S, )
+3 N Aweight [ W12 £ — f°lln/ 9adap (6L, S,5)
27 i cigne | ws 13

1 . 2 0112 init” weigh
< 5 | fweight = f7 Il + 1fps = £7 1l +
=3 ||fwe1ght fOHn ||f/35 f H" 4¢azdap(6L’ S,S)

Hence,

27Aiiit2'\%/eight [ws ||%

2 azdap (6L,S,s)

”waeight - fOHﬁ + }Linitlwcight Z Wj‘Bweight-,j| < ZHfBS _f()”ﬁ +
igs
We now apply 27/2 < 14.

Case ii) If X
.7gs = £2l1n > AinitAweight[ws l2]| (Bweignt)s — Bsl|2,

we get
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| Fweight — f2 112+ AinitAweight ZW_/'\Bweighpﬂ < 2|| /s — Oz

igs

For the second result, we add in Case i), AinitAweignt|[ws||2]|( ﬁweight) s—Bsll2/2 to the
left and right hand side of (6.10):

| Aweighe =2 12+ AinitAweight W12 || (Bweight)s — Bs|2/2 + AinicAweigh YW | Buweight,j1 /2

¢S
< 4A'initaweight‘|WS||2”(Bweight)s —Bsll2-
The same arguments now give
HinitAoseight [ Ws 2| Bueigh)s = Bs |2 <
44liiitz’\§/eight [ws ||2

“fweight_fo||2+l4||f/3 _fOHZ/S—"
i s —J i 702, (6L.S.5)

In Case ii), we have
)l'initlweight Z Wj|Bweight,j| < 4||fﬁ5 _fOH37
jgS
and also R
AinitArweight | W12 ]| (Bweignt)s — Bsll2 < 2| fgs — f°II5/3-

So then

;L'inita'weight ||WS ||2 ” (ﬁweight)S - BSHZ + ;L'inita'weight Z wij |Bweight,j‘

J#s
< 14| fps = fOlI2/3-

We now use 14/3 <5 and 44/7 <7. O

6.11 Concave penalties

We study squared error loss and fixed design (for simplicity), but now with £,-

penalty
P

1BIF =} 1Bl

j=1
BlIS :=#{B, # 0}). We consider data {(X;,Y;)}"

where 0 < r < 1 (in particular, 2

with response variable ¥; € R and covariable X; € 2" (i=1,...,n).
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Let, again as in Section 6.3,
P
fp=Y Biw(-), BER?,
j=1
be real-valued linear functions on 2. The estimator with ¢,-penalty is

B = arg[;nin{’lizn‘, (Y= fp(x:))’ +7Lzr|ﬁ||;} ;

i=1

where 0 < r < 1 is fixed. We let f := fB. Again, A4 is a (properly chosen) regular-

ization parameter. We will typically choose it of order A < /log p/n. We show that
the least squares estimator with concave penalty has oracle properties similar to the
Lasso. The proofs for this section can be found in Subsection 6.11.2.

The idea is that the ¢,-penalized estimator (r < 1) is in some sense less biased than
the Lasso. In particular, the ¢yp-penalty is often considered as theoretically ideal, but
unfortunately computationally infeasible. Also the /,-penalty with 0 < r < 1 is com-
putationally difficult. Moreover, its theoretical merits seem only to become apparent
when looking at variable selection (see Section 7.13). Nevertheless, in this section
we only treat the prediction error and ¢,-error. Our results are to be understood as
showing that one does not loose in prediction error (but that there is possibly a gain
in model selection). The results of this section only serve as a theoretical benchmark
of what can be accomplished. In practice (for 0 < r < 1), one may apply a one step
approximation of the concave penalty by using an adaptive Lasso procedure (see
e.g. Subsection 2.8)

T Rt o

niz j=1 ‘Bj,init|17r

where ﬁinit is an initial estimate, obtained e.g. by the (standard ¢;-) Lasso. In other
words, the concave penalty is connected to the adaptive Lasso, indeed indicating
that it will be less biased than the (one stage, non-adaptive) Lasso. However, there
may be a great discrepancy between the /,-penalized estimator, and adaptive (two
stage) Lasso. We refer to Zhang (2010) for some important contributions for concave
penalties, in particular rigorous theory for a related algorithm, and for the role of the
initial estimates. Theory for the standardly weighted adaptive Lasso is provided in
Chapter 7.

The true regression is
£2(Xi) = EY,

and & :=Y; —fO(X,-), (i=1,...,n) denotes the measurement error. We let for f :
2 — R,

1 n
1717 := - 3 2 (%)),
i=1
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and define the empirical inner product

(.= Y &f ()
i=1

6.11.1 Sparsity oracle inequalities for least squares with (,-penalty

With some abuse of notation, we write for a positive, semi-definite (p x p)-matrix,
2. T
I fpllz =B ZB, B eRP.

Thus, || fgll. = [1/3 |-

Definition We say that the (X, ¢, )-compatibility condition is satisfied for the set S,
with constant ¢y, »(S) > 0, if for all B € R?, that satisfy ||Bsc||. < 3||Bs||}. it holds
that

1BsI < [1f5 115, 1SI7Z" /%, ,(S)- (6.42)

Obviously, for r = 0, the (X, £,)-compatibility condition is trivially fulfilled for all
S, with @5, (S) = 1. In this sense, the {y-penalty does not need any compatibility
condition.

To go from the ¢,-world to the ¢»-world, we may use
Lemma 6.13. We have for all index sets S,
2—r
1Bsllz < ISI=[IBl>-

For 0 < r < 1, the (X, {,)-compatibility condition on an index set S can be used to
compare || - [|5, and || - || . Define

b

£ =Xl := rrjl,é}l{x|(f)j,k —(Zo0)jk

The norms || -||x, and || - ||¢ are close if, with A > ||£ = Xl the expression

AlS |2;rr / (])%M(S) is small. This is shown in the next lemma. This lemma is actu-
ally a generalization of Lemma 6.17 which is given in the next section, and which
considers only the case r = 1.

Lemma 6.14. Let 0 < r < 1. Suppose that the (X, !, )-compatibility condition holds
for S, with compatibility constant s, (S). For all B € R? satisfying ||Bsc||; <
3Bl
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/512
178113,

We now state the oracle inequality for the case of concave penalties. The result is
a straightforward extension of Lemma 6.3. We assume to be on the set 7 given in
(6.43), where the empirical process behaves well. In Corollary 14.7, it is shown that,
under general conditions, .7 has large probability, for Ay of order +/log p/n.

Our definition of the oracle is a generalization of Subsection 6.2.3. Let S be an index
set. Recall the projection fs = fs, in Ly(Q,), of £° on the linear space spanned by

{wi}jes:

—1

2 2—r
<47 (|12 = Zol|-|S| T /95, (S).

fig := argfnzl};ls 1= £°lln-
Definition of the oracle We define the oracle as B* := b5+, with
5. = argyin {4lfs - 13-+ 1200152 /027(5) |
and set f* := fg+, and @. , = @5, ().
Lemma 6.15. (¢,-penalty) Let 7 be the set

2(&,fg)n
T = sup%<ﬁo , (6.43)

Polsgln IBIFT
where for r =0,
IBIIZT = /s, s5 = IBllo.

Suppose 1> > 5102441_’. Let the oracle minimize over the set
S C{S: 4TS /93, (5) < 1/2}.
We then have on 7 N{||£ — Zo|l <A},
I = fOlR 427" 1B = B;/5

2r
<Al = O+ 12092)%(S:1 /92,7

6.11.2 Proofs for this section (Section 6.11)

We start with some simple inequalities (compare with our calculations of convex
conjugates, see Section 6.4).
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Lemma 6.16. Let u and v be positive numbers. Then for 0 <r <1,

urvguer(§>E (lfg)v% §u2+v%.

Moreover,

-0 5 (1=r)tr
u 2z yrr <y 4+

Proof. For r = 0, the results are trivial. For 0 < r < 1, it holds that

_ 2/,):(5)ﬁ( D)
mfx(mz u 5 1 > vI-r,

which implies the first result.

The second result follows from replacing r by 2(2]:rr) and v by N O

Corollary 6.7. For all 0 <r <1 and c > 0, it holds that

Vv2-r
u'v < cu + —,
c2r
and
201-r) 2 v

Proof of Lemma 6.13. For r = 0, the result is trivial. For 0 < r < 1, let p:=2/r,
and
1 1 2—r

—::]——:

q p 2

Then, by Holder’s inequality, for any sequence {a;} of numbers

1
Y lajl < 18[9 lallp.
jes

Apply this with a; = |B;[". 0.
Proof of Lemma 6.14. For all 3,
7613 = 175113, | = IBT£B — B" ZoB|

=[BT (£~ Zo)Bl < AIBIT < AlIBI7,
since 0 < r < 1. If || Bse || < 3| Bs

', we also have

2 2 2=
IBIZ <47 |IBslZ <47 IS 1/ 13, /6, - (S)-
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Proof of Lemma 6.15. Clearly, on .7, by the Basic Inequality,

2(1-r)

17 = PR+ AT 1B < Aol f = £ IIn2 TIB—BIET AR L+ I — O
B —rif * — - * *
< < lIF = fpella+ A5 B = B4+ A2 B I+ 11— £l
We now invoke that for 0 < r < 1, and all 8 andB,and for all S,

1BsI- = 11Bsll; < 11Bs — Bslly-
This gives
*Ilf PO+ =472 | B I

< AP 2574 B, = Bl + 177 = £l

Case i) Whenever
(A*" 2574 Bs, = Bs. I = 117 = £l
we have
%I\f—follﬁ (AT —ATATT) Bl < 2077+ 2574 ) IBs. — Bs. -
But, as A2 > 51027’414,

2AFT A4
<3,
127;* _ 417r)Lg*V

so then we may apply the (X, ¢, )-compatibility condition, or actually, its implied
(X, 4,)-compatibility condition. This gives on 7 N{||X — Zy|| < 1},

3.2 —r —rq2=ry\|I R x| —r —rql=r\|I R * (|7
lef*f°||§+(7L2 —4IATNB =Bl < 3(A% T+ 294 1 Bs, — Bs I

<A ATAT)S TN - 1 /9L
because S, € .7 implies ¢§ r(S*) > 2¢)*’r. Application of Corollary 6.7 gives

||f FOla+ Q=423 B - By

1 % 5 —r —rgl=r\\ 72 ZTrr
<SIf = folla+2x 277 BT +A57417)) 2781 /9

, 2
I = LR 277 BT+ A4S 9
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So then A
17 = fOln +4A>" =425 )IB - B I;

, 2
<4l =12 X2 (3 +/12_’41_’))% [S41/ 9"

< 4|l f* = £Oln+12(924)%(S. /02,

where we use
3ATTTHAZTATT) <3(AFTTHATTT/5) = 18075,

and 2
277 (18/5)77 < 92,

Case ii) If on the other hand,

AP+ 254 ) Bs. = BsE < I = £0l15,

we get
*Ilf U2+ A2 =4 A8 1 Bselly < 211 £* = £0112,
so also
3.4 — —rq2—r\|| Q* * *
lef—fOHiJr(lz T AAEOIB = B < 31— £Ol
and hence

1 = O3+ A =428 1B = By < 4llf = £l

6.12 Compatibility and (random) matrices

As in Section 6.3, let (F,| - ||) be a normed space of real-valued functions on 2,
and .7 = {fg = Z?:l Bjwj: B € R’} C F be a linear subset. Observe that both
the margin condition (see Section 6.4), as well as the compatibility condition, de-
pend on the norm || - ||. It is generally the L, (P)-norm (or, in regression problems,
the Ly (Q)-norm where Q is the marginal distribution of the co-variables), but also
other norms may be of interest. In this section, we consider the situation where
I/5lI> = B"%0B = /5 ||%O is a quadratic form in . The matrix X is some p X p
symmetric, positive semi-definite matrix. To stress the dependence on Xy, we call
the compatibility condition for this norm the Xy-compatibility condition.
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We will show that when two matrices Xy and X; are “close” to each other, the Xy-
compatibility condition implies the X;-compatibility condition. This is particularly
useful when X is a population covariance matrix £ and X is its sample variant £.
This allows then an easy switch from the Lasso with least squares loss and fixed
design, to random design. For convex Lipschitz loss, whether or not the design is
fixed or random plays a less prominent role.

Of particular interest are the choices Xy = X, where X is the p x p Gram matrix
= /wdeP, V= (Y1, W),
Also of interest is the choosing the empirical version Xy = £, where
L= / v' ydp,,

where P, is the empirical distribution of n observations Zi,...,Z,. One may also
consider a normalized version £y := R, with R := diag(£)~'/2£ diag(£)~1/2.

Definition We say that the Xy-compatibility condition is met for the set S, with
constant ¢z, (S) > 0, if for all B € RP, that satisfy ||Bsc||1 < 3||Bs|1, it holds that

IBsIIT < 1/ 13,151/ 95, (S)-

For two (positive semi-definite) matrices Xy and X, we define the supremum dis-
tance
[Z1 = Zo|leo := II}E}{XI(Zl)j,k —(Zo)jxl,

Lemma 6.17. Suppose that the Xy-compatibility condition holds for the set S with
cardinality s, with compatibility constant §x,(S). Assume

[Z1 — Zolleo < A.
Then for all B satisfying ||Bsc||1 < 3||Bs

175113,
178113,

B

— 1| < 161s/93, (S).

Proof of Lemma 6.17. For all 3,
17511, = 11/511%,| = IB" =18 — B ZoP|
=[BT (=1 —Z0)B| < A|IBIIF-

But if ||Bse||1 < 3]|Bs]||1, we also have by the Xy-compatibility condition,
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IBII < 41Bsll < 41l fpllzy V's/ 05, (S)-

This gives _
175113, = /513, | < 1621175113, 5/9, (5)-
0.

Corollary 6.8. Suppose that the Xy-compatibility condition holds for the set S with
cardinality s, with compatibility constant ¢x,(S), and that | £y — Xyl < A, where

321s/93,(S) < 1. (6.44)

Then, for the set S, the Xy-compatibility condition holds as well, with ¢§1 (S) >
¢§O (S)/2. Moreover, for all B satisfying ||Bsc|li < 3||Bs||1, we have

/5113, <2l 7815, <3If5lI5%,-

A similar statement can be made for the (adaptive) (L,S,N)-restricted eigenvalue
condition, as considered in Section 6.8 and Section 6.10. (Section 6.13 gathers the
various conditions.) See Problem 6.10 for a general statement.

We remark that for the case where X is the sample covariance matrix £ of a sample
from a population with covariance matrix X, the results can be refined (e.g. in the
sub-Gaussian case), leading to a major relaxation of (6.44). The details can be found
in Zhou (2009a).

Asymptotics In the case Yo=2X2,and X; = X, and u~nder (moment) conditions,
one has ||X| — Xy|| < A with large probability, where A is of order /log p/n (see
Problem 14.3). We conclude that if

s/93(S) =0 (\/@) : (6.45)

then the metrics || - |z and || - ||z show similar behavior on the set of functions f3
with [| Bse[[1 < 3| Bs]l:-

Let us now look at some further implications of Corollary 6.8 for the Lasso. Let, for
some measure Q1,

Z IZ/WT‘/’dQl-

By definition, || 3|3, = B7Z18. We now also use the same notation || - ||, for the
L>(Q1)-norm, so that || f||x, is defined for all f € F. This is not completely correct,
as X generally does not characterize the L,(Q;)-norm, but we believe confusion is
not likely.

Recall that the excess risk is &(f) := P(f — f°) (see Section 6.3). We introduce a
set Fioca1 C F as in Section 6.4.
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Definition We say that the Xi-margin condition holds with strictly convex function
G, if for all f € Fiycal, we have

E(f) = G(If = fOlls,)-

Suppose the Xj-margin condition holds, and the Xy-compatibility condition for a
certain collection of sets S. Let

S C{S: 32118|/93,(S) < 1}.

When [|Z; — Zo|| < A, we know from Corollary 6.8 that the X -compatibility con-
dition also holds for all § € .. Let us recall some definitions, now with the implied
bound for the X;-compatibility constant.

Set, as in Section 6.7,
b3 := arg min E(fp), fs 1= fis.
B=Bs

Let

Sy = argmm 38 (fs) +2H 4\[1\/'?
¢Eo( )

B*:=b%, f*i= fps,

e :=38(f")/2+H <4\gl\/|)§> =&/ .

An immediate corollary of Theorem 6.4 is now:

Corollary 6.9. Assume the Xi-margin condition with strictly convex function G,
with convex conjugate H. Take

S CAS e Sy 32018]/93,(S) < 1}.

Assume fg € Fioca for all || B —B*||1 <M, as well as f* € Fiocal, and that A > 8.
Let T := {Zy < dgM*}. Then on the set T N{||Z; — Zo||o < A}, we have

EF M — Bl < 46" = 687 +an DALY
(PZO(S*)

Iffo= fpo, and if, for So 1= Spo, it holds that 321|S0|¢§0 (So) < 1, then we have
under the above assumptions with . = {8y}, that on 7 N{||Z; — Zo|j« < 1},
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WIS,

7 0._

Also, then on 7 0 {|| X1 — Zol. < A},
1 = 711, = 1 = 0I5,

- (40 ?
<A(=).
(%)

The assumption 321 |So|/ ¢§0 (So) <1 is related to the possibility to consistently

estimate B° in £;-norm. Corollary 6.9 implies that

1B — Bl < 4€°/2.

Assume now for simplicity that the margin behavior is quadratic, say G(u) = cu?.

Then the convex conjugate is H(v) = v?/(4c), and we find

e/n = lSol
C‘P}:O(SO)

With A being of order \/logp/n, the condition \S0|/¢§0 (So) = O(y/n/logp) is

needed for a value £ /2 that remains bounded.

In fact, a bounded (actually “small”) value for €°/A, or more generally for M* =
€* /Ay, will also be helpful to verify the assumptions. We assumed in Corollary 6.9
(and similarly in Theorem 6.4), that

fﬁEFlocalvHﬁfﬁ*”l <M. (6.46)

If the base functions are bounded, say ||y;||. < K for all j, one easily verifies that
/g — fp+lle < K|[|B — B*[l1. Thus, if Fiocy is an Le-neighborhood of £9, and the
oracle fpg« is Le-close enough to £9, then condition (6.46) will be met when M* is
small enough. A detailed illustration of this line of reasoning is given in Example
6.4 (where, in particular, we require (6.34)).

Example 6.5. Application to squared error loss
Consider quadratic loss
pr(y) = —F()*
Let Q') be the distribution of X;, Q := Yt o\ /n, and O, the empirical distribution
based on X, ...,X,. Define the Gram matrices

z :=/wdeQ, b :=/wdeQn-

Fori=1,...,n, let the target f*(X;) := E(Y;|X;) be the conditional expectation of ¥;
given X;.
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We write (for i = 1,...,n), & = ¥; — f°(X;), and as before (Example 6.1), for f :
2 — R,

n

(.= Y (%),

i=1

and we let || - ||, (]| - ||) be the Ly (Q,)- (L2(Q)-)norm. Thus,

17glln = /B s 171l =117z

We assume [0 = Jfpo is linear (or consider the estimation of the linear projection).
The (within sample) prediction error of a regression function f is || f — f° ||§ (for the

case of fixed design) or || f — f°||3 (for the case of random design). More generally,
we may be interested in out-of-sample prediction error, or transductive situations
(Vapnik (2000)). This means one is interested in

£ = £Ol13,

where X is some positive definite matrix possibly other than £ or X.

As for any design, the £-margin condition holds, we obtain as consequence of
Corollary 6.9:

Corollary 6.10. Assume the Xo-compatibility condition for Sy for some Xo. Let A
satisfy 324|So| /9%, (So) < 1. Let

7= {max2l(e, vl < o .
J

Then on 7 N{||£ — Zo|le < A1}, and for A > 8L, we have

. . 32A2|So|
F=F+AIB =B < =
[ | | 1 02 (50)

and

s o s op| L 32A4180]
1 = 1215 =17 = F°l §7¢§0(So)'

Note that the straightforward application of the rather general Corollary 6.9 resulted
in somewhat bigger constants than in Theorem 6.1, whose proof is tailored for the
situation considered.

One may alternatively directly apply Theorem 6.4 to general design, as the X-margin
condition holds as well. Note however that the set .7 then becomes

7= { sp |26, f5— )

IB=BOll <m*
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+I£ = 2l =I5 — £OI

<dohr'}.

We will treat this set in Section 14.9.

6.13 On the compatibility condition

The compatibility condition we discuss here partly follows van de Geer (2007), but
we also present some extensions. For a further discussion, we refer to van de Geer
and Biihlmann (2009).

Let 2 be some measurable space, P be a probability measure on %, || - || be the
Ly(P) norm, and

p
7= = Low): perr)
=1
be a linear subspace of L, (P). The Gram matrix is

2:=/wdeR
so that
/51> =B"ZB == /5%

The entries of X are denoted by ¢« := (W, Yi), with (-,-) being the inner product
in L2 (P) .

To clarity the notions we shall use below, consider for a moment a partition of the

form
b)) P
y.— (=1 12
1 Xop
where X | is an s X s matrix, X is a (p —s) x s matrix and Z; 5 := Zle is its

transpose, and where X5 is a (p —s) x (p —s) matrix.

Such partitions will play an important role in this section. We need them for general
index sets S with cardinality s, sets which are not necessarily the first s indices
{1,...,s}. We introduce the s x s matrix

21’1(5) = (O'j,k)j,ke&

the (p —s) x s matrix
£1(8) = () k) j¢s kes:
and the (p —s) x (p —s) matrix

22(8) := (0 k) jkgs-



6.13 On the compatibility condition 157

We let A2 (Z11(S)) and A2 (X 1(S)) be the largest and smallest eigenvalue

of X1 1(S) respectively. Throughout, we assume that A2. (X1 1(S)) > 0, i.e., that
X 1(8) is non-singular.

We consider an index set S C {1,..., p}, with cardinality s := |S|. With  being a
vector in R”, we denote by

Bis:=Bl{jeS}, j=1,...,p,

the vector with only non-zero entries in the set S. We will sometimes identify g
with {Bj}jes € R’

For a vector v, we invoke the usual notation

Iy = { @i 1<g<eo
4 max; |vj|, g=o0

We introduce minimal {-eigenvalues, and re-introduce the compatibility constant.

Definition The minimal {;-eigenvalue of Xy 1(S) is

5P3 Z1.1(5)Bs
1Bsli

Let L > 0 be some constant. The (L, S)-compatibility constant is

sBTEpB
[1BslI3

A2 (E11(5)) = min{ Bl # o}.

B2 (L.S) = min{ Bl < LIBslh # o}.

By this definition, for all ||Bsc|[; < L||Bs|l1 # O,

1BsIF < sllf5 1%/ 9éomp (L. S).

In the previous sections, the constant L was chosen as L = 3 for ease of exposition.®
For applications to the Lasso, this may be replaced by some other value bigger than
one, but then one has to adjust the choice of the regularization parameter.

Definition
The (L,S)-compatibility condition is satisfied for the set S, if Pcomp(L,S) > 0.

This definition is as in the previous sections. However, we now define @comp (L,S)
as the largest possible constant for which the compatibility condition holds.

6 If A is the regularization parameter, and A9 < A is the noise level we used in the set .7 of
Subsection 6.2.3, then one may replace L =3 by L = (24 +29)/(A — Ao). The latter expression is
bounded by 3 when one assumes A > 4. (In Subsection 6.2.2, we took B* = BO, A >2A and
L=(A+%)/(2=2).)
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In this section, we will present conditions for the compatibility condition to hold.
The organization is as follows. We first present some direct bounds for the compat-
ibility constant in Subsection 6.13.1. We show that the compatibility constant is a
minimizer of a Lasso problem.

In Subsection 6.13.2, we replace, in the definition of the compatibility constant,
the ¢;-norm ||Bs||; of Bs by its bound +/s||Bs]|2, and call the result the (adaptive)
restricted eigenvalue. The conditions are then similar to the restricted eigenvalue
condition of Bickel et al. (2009). We impose conditions on the length of the pro-
Jection of —fp . on fp . Subsection 6.13.3 finally uses conditions from Candes and
Tao (2007), and also some extensions. It considers supsets .4~ of S, and places re-
strictions on the minimal eigenvalues of X ;(.4"), and on the elements of X »(.4")
(uniformly in all .#” D § with cardinality at most some given value N).

6.13.1 Direct bounds for the compatibility constant

A first, rather trivial observation is that if X = I, the compatibility condition holds
for all L and S, with @comp(L,S) = 1. The case £ = I corresponds to uncorrelated
variables. If there is correlation, this may be due to some common underlying la-
tent variables. Because this will become important later on, we present this simple
situation in a lemma (see also Problem 6.14).

Lemma 6.18. Suppose that
r=Xy+2Z,

where Xy and £ are both positive semi-definite. If the || - || g, -compatibility condition
holds for S with constant @comp x, (L, S), then also the || - || s-compatibility holds for
S with constant Peomp,x (L,S) > Pcomp.x, (L, S).

Proof of Lemma 6.18. This is clear, as

/2 =B"ZB =B XoB" = | /3=,

O
An important special case is
Xo=(-0),
where © = diag(6y,...,6,), with 0 < 6; < 1 for all j. Then Czompﬁzo(L,S) >
Ain(Zo) = 1 — maxies 6.

After normalizing by |S|, the larger S, the smaller the compatibility constant (and
hence the harder the compatibility condition).

Lemma 6.19. For S O S°,
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2 2
Peomp (L+S)/1S| < Peomp (L, S°)/15°].

Proof of Lemma 6.19. Suppose that || B(sc |1 < L||Bse
L||Bse|l1 < L||Bsl|1- Hence, for all || Bseye [t < L||Bse |1

1- Then |[Bse[[1 < [|Bse)ellr <

1751l /gl 11/l
¢comp L N /\/K {”ﬁ || H:BS ”1 7L||BS||1 7'&0} = ”ﬁS”l ||ﬁS°H1

40}

But then also

(Pcomp L N /\/m < mln{ |||l')>fB|||| Hﬁ(So)le < LHﬁSO

= ¢comp(La SO)/\/@'

a

Compatibility constants may be smaller than the ¢;-eigenvalues of the matrix
Z1.1(S), as the following lemma shows.

Lemma 6.20. We have
¢020mp(l‘7 S) < Amm 1 (21,1 (S)>

Proof of Lemma 6.20. This follows from the obvious fact that for all 8, (Bs)sc =
so certainly ||(Bs)sc||1 < L||Bs]||i- Hence

sl /g 1%
IBslIF

¢comp ( S )

a

The question is of course: how can we calculate (])Czomp (L,S)? It turns out that this
question is related to how the Lasso behaves as deterministic approximation scheme.

Let us define, for f € L,(P) and L > 0,

LASSO(f,L,S) := 2
(f.L.S) it <L||f/ss il

The restricted minimum can be derived using Lagrange calculus. Let A > 0 be the
Lagrange parameter, and set

Bs(h) == argrr;;n{wgs AP+ AlIBsls }

By duality, there exists a value Ay, such that
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LASSO(f,L,S) = || fpg pima — FII* Bsprimat := Bs(Ar)-

Lemma 6.21. The (L,S)-compatibility constant is the solution of a Lasso problem,
namely
¢comp( )/S - ”BH}IIH LASSO( fﬁvaaSC)'

Lemma 6.21 does not provide us with explicit lower bounds for the compatibility
constant. This is the reason why we present further bounds in the subsections to
come.

The lemma illustrates that the problem of finding the compatibility constant is at
least as hard as finding the Lasso approximation. We actually hope that the Lasso
approximation LASSO(— fg,,L,S¢) is not very good, i.e., that we cannot approxi-
mate — fp; very well by a function fg,. with [|Bsc|[; < L.

Proof of Lemma 6.21. We have

2 2
o+
min ||fﬁ||2 min 1 /34 J;ﬁSH
IBse I <LIBslli#0 |Bs]IT  IBselh<LIBslli#0 || Bs]|T
= min . + 2 .+ 2
el 2 o s 085t sl = i e e+ Tl
= min LASSO(—f,L,5°).

[IBsll1=

O

Let us now have a closer look at the minimal ¢;-eigenvalue. Consider an s X s sym-
metric, positive definite matrix X; ;. One easily checks that

Amin1(Z11) = Agin(Z11).

The lower bound A2 (X ) can generally be improved, as the following lemma
shows.

Lemma 6.22. Let Xy | be some s X s symmetric, positive definite matrix. Then for
some vector T satisfying || 7|l < 1,

Ty—1
T 21’11

A 1(21,1) = e 1.2
m s||217117||%

More precisely, a solution of

b:=arg min b’ X b.
l[ll1=1 '

isb =217/ 7|, sign(b;) = til{|b;| #0}, j=1,....s.
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Proof of Lemma 6.22. Introduce a Lagrange parameter A € R. Then the problem

min bTZl,lb
olh=1

is equivalent to minimizing, for a suitable A4,
min{b” 1 1b+21|b||1}.

By the KKT conditions (see Lemma 2.1), for b; # 0,
(Z1,1b) + Asign(b;) =0,

and for b; = 0,
[(Z110),] < |A].

Therefore, there exists a vector T with ||7]|« < 1 such that
X 1b=—Art,
and sign(bj) = 7;if b; #0, and b; = 0 if |7;| < 1. It follows that
by b= —A|bl;.
So, because ||b||; = 1, we have A = —bT X, b < 0. Furthermore,

b=—AZ|T.

It follows that
A= -1/ 7l
So we may take the solution

b=Zit/IIZ -

We now have
b'E b =1"E /|| 2

6.13.2 Bounds using | Bs||? < s||Bs||3

Let S be a set with cardinality s. In the compatibility condition, one may replace
IBs|l1 by its £,-bound +/s||Bs]||2. This leads to the following definitions.

Definition The (L, S, s)-restricted eigenvalue of X is
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> ._ ||f/3||2
9°(L,S,s) = [1Bsellv < L|Bslly #0 -

"UIBsIE
The adaptive (L,S,|S|)-restricted eigenvalue of X is
> e 1
(Padap(L’Svs) ‘= 1min ||ﬁS||2 . ||BS"||1 SL\/EHBSHZ#O :
2

Definition
We say that the (L, S, s)-restricted eigenvalue condition is met if ¢(L,S,s) > 0.
The adaptive (L,S, s)-restricted eigenvalue condition holds if §adap(L,S,s) > 0.

The restricted eigenvalue condition from Bickel et al. (2009) assumes the (L, S, s)-
compatibility condition for all § with size s.

Itis clear that g, (L, S,5) < 9*(L,S,s) < @gmp(L,S), ie.,
adaptive (L, S, |S])-restricted eigenvalue condition =
(L,S,s)-restricted eigenvalue condition =
(L,S)-compatibility condition.

We first present a simple lower bound, for the case where X is non-singular.

Lemma 6.23. Suppose that X has smallest eigenvalue Amm (X) > 0. Then the adap-
tive (L, S, |S|)-restricted eigenvalue condition holds for all index sets S C {1,...,p},
With Qagap(L, S, |S|) > Amin(Z).

Proof of Lemma 6.23. Let 3 € R? be arbitrary. It is clear that

1Bll2 < 1711/ Amin (Z)-
The result now follows from the trivial inequality ||Bs|[> < ||B||2- O
Lemma 6.24. It holds that

Oaiap(L,S,8) = min LASSO( fpg L/5,5°).

1Bsll2=

Proof of Lemma 6.24. We have
/sl 2
min Il Bqe +fi l
Bsell <Ll Bslla0 1Bs I3 1Bsell <Ll Bsllao P/ Isla B/ sl

2
Hﬁst 1\\BS¢\\1<L\[”fﬁS‘ S8

= min LASSO(—fp,,L\/5,5°).
IBs]2=1



6.13 On the compatibility condition 163

One may verify that, as with the compatibility constants,
O(L,S,IS]) < o(L,S°,|S°[)

for § O S°. The same is true for adaptive restricted eigenvalues.

2

Next, we show that our assumption A7,

text of the present subsection.

(Z1,1(S)) > 0 is not restrictive, in the con-

Lemma 6.25. We have

¢2(L7S’S) < Ax%lin(zl,l (S))

The proof is Problem 6.11.

Let f; and f> by two functions in Ly (P). The next lemma assumes that the regression
of f> on fj is strictly larger than -1. This rules out the possibility to cancel out f; by

Ja
Lemma 6.26. Suppose for some 0 < ¥ < 1.

—(fi.f2) <Ol Al

Then
(I=9)Al <A+ L.

Proof. Write the projection of f, on f] as

Bor= /AR,

Similarly, let

(fi+ )} = A+ A0/l AIRA
be the projection of fi 4+ f> on fi. Then

i+ =fitf1= (1 +(f27f1)/||f1||2>f1,

so that

1A+l = ‘H (B /AN 1A

:@+mmwmwﬁmmu—mwm

Moreover, by Pythagoras’ Theorem

i+ L7 2 1+ 2T
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O

This result leads to the definition of the (adaptive) S-restricted regression, given
below. At this stage however, it is important to recall Lemma 6.18. If

I=X+%, (6.47)

with both Xy and £ positive semi-definite, then for verifying the compatibility con-
dition, or (adaptive) restricted eigenvalue condition, one may replace throughout X
by any of the two matrices Xy or £, say Xy. A special case is Xy = (I — @), where
© = diag(6y,...,6,), 0 < 0; < 1. The compatibility conditions and it variants are
very easy to verify for the diagonal matrix (/ — @). However, if we then look at the
inner products Z; »(S) (as we essentially do when studying the (adaptive) restricted
regression defined below), this only involves the matrix £. This point should be kept
in mind throughout the rest of this section: lower bounds for compatibility constants
or (adaptive) restricted eigenvalues that are based on the inner products in X »(S)
can be unnecessarily pessimistic.

Definition The S-restricted regression is

o) i)l
1Bse I <liBsi 11 /gl
The adaptive S-restricted regression is
|(fps /B )|

Datap($) = max PPl
’ 1Bse i <vslBsl 117 12

Corollary 6.11. Suppose that O(S) < 1/L (Oadap(S) < 1/L). Then the (L,S,s)-
restricted eigenvalue (adaptive (L,S,s)-restricted eigenvalue) condition holds, with
¢(L,S,5) = (1= LB(S))Amin(Z1.1(5))

(¢adap(L7S7 S) > (1 _Lﬂadap(S)Amin(El,l(S)))-

It will be shown in Theorem 7.3 of Section 7.5.5, that for all || Ts||. < I,

12,1 (S)Z11 (5) s oo < Budap(S)-

Hence, bounds for @aqap(L,S,s), (with L < 1), based on the above corollary, actually
imply the irrepresentable condition.

There is always an upper bound for ¥,4ap (). This bound will play its role for prov-
ing variable selection of the adaptive Lasso under general conditions.

Lemma 6.27. If |y;|| < 1 for all j, we have

Vs

19adap (S) S m
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Corollary 6.12. Suppose ||y;|| <1 for all j. Then for 2L < \/s/Amin(Z1.1(S)),

(Padap(LaSas) > Amin(zl,l(s))/z'

Proof of Lemma 6.27. We have for ||fsc||1 < /s||Bs]|2,

/e I = 11'Y. Biwill < Y 1Bl wl
J¢S J¢S
= ||Bscll1 < Vsl|Bsll2
< V|| |l [ Amin (Z1,1(S)).

This implies
(ool _ el 5
18> = ISl — Amin(Z1.1(S))

a

We now present some further bounds on the S-restricted regression ©¥(S) and its
adaptive version. For this purpose, we introduce some matrix norms. Let 1 < g < oo,
and r be its conjugate, i.e.,

1 1
—+-=1.
q r
Define
[Z12(8)[[eog := max [|Z12(S)Bse]]o,
' T psell<t
and

by — by ello.
[Z12(8)]l24 := ”ﬁmﬁquH 12(8)Bse 12

In this subsection, we actually only consider the case g = o, i.e., the quantities

X 1Z12(8)Bse [|co

21208
112(5)] Hl3 H1<1

and

[Z12(9)][20 == max [|Z;2(S)Bse]2-
Hﬁ Hl 1

The case where ¢ is taken to be finite is studied in the next subsection.

Lemma 6.28. We have the upper bound

[1Z1.2(8)[low 0
9B(S) < *7’.
( ) B Amm 1 (21«,] (S))
Similarly,
V[ Z12(8) |20
19adap(S) < m (6.48)
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Remember that Amm L(Z11(8)) > A2, (Z11(S))/s. It is moreover clear that

[Z12(8) 1200 < V5[ Z1 2(8) |0 0 < v/smaxmax |-
JjES keS

min

In addition (see Problem 6.12),

Z12(8)]2.0 < max 6.2 maxmax o
1212(8) < max [ 07 < Vimamag o]

The consequences are in the spirit of the maximal local coherence condition in
Bunea et al. (2007¢).

Corollary 6.13. (Coherence with g = ) Assume that
vimags yLies O _ o /L
<O <1/L.
Agin(Z11(9))

Then ¢adap(LaS7 |S|) > (1 _Le)Amin(zl,l(S))'

Proof of Lemma 6.28.
2
max |(f[357fﬁ;c)| _ max |(fﬁs?f[3§~c)| ||ﬁSH[2
IBselli<IBsl I fpgll IBseln<liBsl  IBsllT  [1/psll
|(fBs>Bge )

< max =SB AL (X(S

1Bselh<IBsli ||Bs]I? in (21.1(5))

= e ||212( )Bse oo/ Ain.1 (Z1.1(S)).

= | Z12(8)llooge /Amin1 (Z1,1(S)).

The second result we derive similarly:

2
S /) B /58 91N 111
IBsel<vslBslla |15l IBsclli<vslBsl: — IBsls Il 7l

- max |(f/55,f525c)\
IBselh<vslBsla Nl Bsll3

= g I1212(8)Bsell2/Agin(Z1,1(S))-

= V5l Z12(8) 2.0/ (Agin (Z1.1(5))).

/Amm(zlyl(s))
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Example 6.6. Let S = {1,...,s} be the active set, and suppose that

L X2
X = ’ ),
<22,1 D%

and in fact, that for some 0 < p < 1,

1 0 0 p/v/s 0 - 0
0 1 0 p/v/s 0 - 0
0 0 0 : :
¥ 0 0 1 p/y/s O 0
p/\s P/ p/v/s 1 0 0
0 0 0 1 0
0 0 0 0 0 1

It can easily be shown that the compatibility condition holds, with ¢comp(L,S) >
1 — p. Moreover, for p > 1/4/s, the irrepresentable condition (defined in Sub-
section 7.5.1) does not hold (see also Problem 7.2). Because ||| = ||Bs|2, and
Amin(Z1,1) = 1, we moreover have

Dadap (S) = V/5[|Z1 22,0,

i.e., the bounds of Lemma 6.27 and (6.48) are achieved in this example. If fact,
1220 = P, s0
19adap (S) = \/EP

6.13.3 Sets .V containing S

Recall (6.47), i.e., one may first want to replace X by some simpler X if possible.

To derive rates for the £,-norm with 1 < g <2 (see Section 6.8), we needed stronger
versions of the (L, S)-compatibility condition. Let us cite these versions here.

For .4 O S, we have introduced the restricted set

(LS, N ) = {IIﬁscll < LIBslh, 1Borello < min |B,»|}.

JENS

We complemented this with an adaptive version

B (LS, N ) = {ﬁscnl < Ly5]Bsas Byl < min IBjI},
JENS
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and a minimal adaptive version

Boin(L,5, N) = {mcul < LVNIB.y o 1Byl < min Iﬁjl},
JEN\S

Definition Let S be an index set with cardinality s and N > s be an integer. We say
that the (L,S,N)-restricted eigenvalue condition holds, with constant ¢ (L,S,N), if

73]l

1Byl

¢(L,S,N) := min{ : BeRL,S,N), N DS, |N| N} >0. (6.49)

We say that the adaptive (L,S,N)-restricted eigenvalue condition holds, with con-
stant ¢adap(LaSaN)’ lf

1l B € Raap(L,S, N), N DS, | N|=N} >0.

1By |2
(6.50)
We say that the minimal adaptive (L,S,N)-restricted eigenvalue condition holds,
with constant Quin (L, S,N), if

/3]l
1B ll2

Dutap (L, S,N) = min{

: B € Pin(L,S, N), N DS, |W|:N} > 0.
(6.51)

Omin(L,S,N) := min{

The constants ¢(L,S,N), @agap(L,S,N) and ¢pin(L,S,N) will again be be referred
to as ((minimal) adaptive) restricted eigenvalues. Clearly (for N > s),

‘Pcomp(LaS) Z ¢(L7S7S) Z ¢(L757N)
and similarly
‘Pcomp(L,S) > (Padap(LaSas) > ¢adap(LaS7N)7

and
¢comp(La S) > ¢min(L7Sas) > ¢min(L7 SaN)'

Furthermore,
¢(LaS7N) 2 ¢adap(LaS7N) 2 ¢min(L7S7N)'

We recall that, apart for the case where we assume the truth itself is sparse, our
Lasso results for the ¢;-error mainly needed lower bounds for @uin(L,S,N) (see
Section 6.8).

Definition For N > s, the (L,S,N)-restricted regression is

®(L,S,N):=  max max 7| (fﬁ'”/’fﬁ’;'r ) .
NS, | N |=Npez(LS.N) | fp, |
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The adaptive (L, S, N)-restricted regression is

Vadap(L,S,N) :=  max max M
A8, ‘L/V‘:Nﬁe'%adap(Lvsa'/V) ||fﬁ4/ ||2

The minimal adaptive (L, S,N)-regression is

U oS, )|

Omin (L, S,N) := max X
min ) NS, | N =N BeBmin(LS) | fp, IIP

Note that
O(L,S,s) = LY(S),

and similarly for the (minimal) adaptive variant. For N > s, this scaling no longer
holds.

Definition For N > s, the (S,N)-uniform eigenvalue is

Amin(S,N) := 'A/D;n‘iBV‘:NAmin(El,l(r/V»-

One easily verifies that, similar to Corollary 6.11, for 9(L,S,N) < 1,
O(L,S,N) > (1 — Badap(L,S,N))Amin (S, N).

Similarly,
¢adap(LasyN) > (1 - ﬁadap(LvsaN))Amin(SaN)- (6-52)

and
¢min(Last> > (] - ﬂmin(L>S7N))Amin(SvN)~

6.13.4 Restricted isometry

The restricted isometry property (Candes and Tao (2005) or Candes and Tao (2007))
is the condition
6s + es.,s + 9‘9,2‘\‘ < 17

where &, (assumed to be in [0, 1)) is the smallest value such that for all S with |S| =,

and all B
(1= 8,)11Bsl3 < |l/5lI* < (1+8,)1Bsl3,

and for N > s, 0,y is the smallest value such that for all .4 with [4| <N, all
M C N with | 4| < sandall B
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‘ (fﬁ% ’fﬁ./y’ ) | 0 N
IBal2lByll2 =

The constants J; are called restricted isometry constants, and the 6,y are called
orthogonality constants. It is clear that

1—8y < A2, (S,N).

min
Candes and Tao (2005) show that
52s S 6s + es,s-

In Koltchinskii (2009b); Bickel et al. (2009), it is shown that

6s25
0, 1,8.2s) < ——2— .
adap( ,S, 5)_ 1—-6,—9,,

’

Hence, the restricted isometry property implies that ¥4ap(1,S,25) < 1.

6.13.5 Sparse eigenvalues

Sparse eigenvalues can play an important role for the variable selection problem,
see Subsection 7.8 and 10.5.1. They are similar to the restricted isometry constants.
We present a relation between the adaptive restricted regression and sparse eigen-
value conditions. This leads to a bound for the adaptive restricted eigenvalue (see
Corollary 6.14), and hence also for the restricted eigenvalue (the latter result is as in
Bickel et al. (2009)), and for the compatibility constant.

Definition For a given N € {1,..., p}, the maximal sparse eigenvalue is

Amax(N) = ‘y‘a:XNAmax(Zl,l(JV))-

We also recall the (S,N) uniform eigenvalue

Amin(S;N) = 'A/Dgll‘i}‘:NAmin(El.l(/l/))-

A quantity that one also encounters in literature is the the minimal sparse eigenvalue

Amin(N) = ‘jVn‘iENAmin(El,l(/V)>-

We will however base our results on the uniform eigenvalue, and not on the sparse
minimal eigenvalue. Note that
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Amin(SvN) > Amin(N) v |S| <N.

Lemma 6.29. Let S have cardinality s and let N > s. We have

LAZ. (2N —5) s
v, L,SN) < —1&
adap( Hag] ) = TA2 (S,N) N—s’

min

and
(L+1)A22N—s) | N
A2, (S,N) N-—s’

min

19min(LaS,N) S

Proof. Fix some § € R? that satisfies ||Bsc||1 < Lv/s||Bs|2- Let A := A5 D S be
the set which has .47\ S as the N — s largest coefficients |B;|, j ¢ S. Letfork=1,...,
% be the set of N — s largest coefficients |B;], j ¢ -#x—1. Then by Lemma 6.9

Y 1Bl < 1Bselli /vVN—s

k>1

N S
<L — <L .
< LlBsllzy/ = < LIBrll2y/ 5=

It is moreover not difficult to see that for all k > 1,

[P P
Tk T <A
IBalllBalla = ™

(we use: |[(f1, )| < |Ifi + £lI> V| fi — fo|]> for any two functions fi and f3). It
follows that

(2N —35)

s
N—s

|(Fpyer fp. ) < X N(fpy o fp.0 ) < LAG 2N = 5) 1By 12

k>1

N _
< LAZL N =9)fp, I\ AR (S.N).

For the second result, we refer to Problem 6.15. O

Corollary 6.14. Suppose that

LAZ, (2N —5) s
A2 (S,N) VY N—s

<1. (6.53)

Then by (6.52)

 LAG (2N =) s
(S,N) N—s

A2

min

¢adap(LasaN) > (1 )Amin(S,N).
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Condition (6.53) is used in Zhang and Huang (2008) and Meinshausen and Biithlmann
(2010) with a suitable choice of N (and with Ay, (S, N) replaced by Apin(N)), for
deriving variable selection properties of the Lasso or randomized Lasso. (see also
Subsection 7.8 and 10.6).

6.13.6 Further coherence notions

We first consider the matrix norms in some detail.

Lemma 6.30. The quantity | X 2(A )||%2 is the largest eigenvalue of the matrix
Zi2(AM)Ep 1 (N). We further have

IZ12(A)l2.g < VN|Z12(A) [l g5

and
q\ /4
[Z12(A )2, < (Z ( Y Gf,k> ) :
jEgnr \\\ ke
Moreover, 1
q
< 14
[Z12(A)eog < <Z }gggﬂ%,k )
JEN
Finally,
[Z12(A)loeig = 1 Z1,2(A ) [loo,eo,
and

1Z12(A )24 2 [Z12(A) |20

The proof is Problem 6.13. Hence, for replacing || Zj 2(A")]|coco (|| Z1,2(4]|2,00) Y
1Z12(A)|og (IZ1,2(4 ||2,9)5 g < o0, one might have to pay a price.

In the next lemma, we assume g < oo, as the case g = oo was already treated in
Subsection 6.13.2. Recall that A2, | (Xy,1(.#)) is the minimal ¢;-eigenvalue of the
matrix X 1 (/). It was defined in the beginning of this section.

Lemma 6.31. (Coherence lemma) Let N > s and 1 < g < oo and 1/q+1/r=1.
Then
L|Z12(A)||o=g

oS =N (N —$)VIAZ (Z11(H))

'min, 1

O(L,S,N) <

Moreover,

i L5 Z12(A ) l2g
N DS, | N |=N (N—S)l/q/\2~ (2]71 (JV))

min

ﬂadap(Lv&N) <
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Finally,

(L+DVN|Z12(A)]2,
Bimin (L, S,N) < A/j;n\a% =N (N —5)1/4A2, (21,1(«/’/)(1)'

min

Proof of Lemma 6.31. Let .#” D S the set with .4"\S being the set of indices of the
N — s largest |B;| with j ¢ S. We let f.y := fg ., fre = fp .. and f:= fp.
We have

((frs fre)l = By Zra(A)Buye|

<[ Z12(A) gl Byl Bl

By Lemma 6.9,
1B.rells < I1Bsells /(N —s). (6.54)

We now use: if ||Bse|l1 < L||Bsl|1» || Bse|l1 < L||B.y]|1- This yields

L 2
I

|(f/V7f/V‘)| < W

Alternatively,

[ s o)l < N Z02( A ) l2gllBaellr 1By ll2,
and if [|Bsell1 < Lv/s||Bsll2, |Bse It < Lv/s[|B.y |- So then

Ly's

|(frs fne)] < w )1/q||[3//|\2~

The third result follows from

[Bsellv < IByells + 1Bl
Hence, for B € Zmin(L,S,.N),

I1Bsell1 < (L+ D)VN[IBy|2-

O

With ¢ = 1 and N = s, the coherence lemma is similar to the cumulative local co-
herence condition in Bunea et al. (2007b). We also consider the case N = 25. We
confine ourselves to the adaptive restricted eigenvalues. (For the minimal adaptive
restricted eigenvalues it is straightforward to adjust the constants appropriately.)

Corollary 6.15. (Coherence with g = 1) Suppose that
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b

V4| Lkes (Zj;és

9 <1/L
JERG)
or
2
\/):ke-/if (Z;g,/rcjﬂ) )

max < <1/L,
N DS, | N |=2s \/EAr%]in (21’] (JV)) B /

then ¢adap(L7S7N) > (1 _Lﬁ)Amin(El,l(S))-
The coherence lemma with ¢ = 2 is a condition about eigenvalues. It is stronger

than the restricted isometry property in Candes and Tao (2005) or Candes and Tao
(2007). Taking moreover N = 2s in Lemma 6.31 gives

Corollary 6.16. (Coherence with ¢ = 2) Suppose that

H212( 22

(Z11(A)) So<l/L

NS, [ |22 Al

Then ¢adap(L S 2S) (1 —Lﬁ) mm(ZM(S)).

6.13.7 An overview of the various eigenvalue flavored constants

We put the various constants used for proving oracle results together.

Let S be an index set with cardinality s. For .4” D S, we define the restricted sets

(LS, N) :{ﬁ By < L1Bsl max B/ < min |ﬁ,|}

eN\S

Fntap 1,5, ) :={B Bl < £v51se: max[B] < min |ﬁ,|}

jeN\S

and

%’mm@,sm::{ 1B 1<l < LV/EFTIB oo, max ] < min m}

eN\S

In Chapter 7, we will also use

ﬂvarmin<L,s,W>:{B 1Borell < Ly ||M|z} BriapLo N N,

and the variant of the minimal adaptive restricted eigenvalue given below.
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For N > s, we have defined the following constants:

the maximal eigenvalue

15 I
I1Bsl3

Au(E(s) = max{ L p 0},

the maximal sparse eigenvalue
Aa) = max{ A2 (210 =N,

the minimal eigenvalue

15 I
1Bsl3

A(za(5) = minf L p o),

the uniform eigenvalue (which is generally larger than the minimal sparse eigen-

2 . .
value A7, (N) used in literature)

Aéin(S,N) = min{Aiin(2171(W)) AN DS, | A :N}.

the compatibility constant

sll /117
1Bsli

Oy (L,8) = mind T pea(L.5.5) .

the restricted eigenvalue

[FAls

1B+ 113

¢*(L,S,N) := min{ : BERL,S, N), N DS, |N| :N},

the adaptive restricted eigenvalue

17511
1B 113

Otap (L, S, N) 1= min{ : B € Rodap(L,S, N ), N DS, |N] _N},

and the minimal adaptive restricted eigenvalue

15117

184113

¢%in(L7S,N) = min{ : B € Rmin(L,S, N ), N DS, |N| —N}.
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We also introduced the minimal ¢;-eigenvalue, which we skip here as it was not
further exploited.

Moreover, in Chapter 7 we employ

the variant of the minimal adaptive restricted eigenvalue

751>
1BA13

. 2
= min i dan (Ls A N).
yar ‘!/V‘:Nq)dddp( )

02 in (L, S,N) := min{ B € Byarmin(L,S, N ), N DS, |N] :N}.

‘We note that
Ocomp(L,S) > ¢(L,S,N), VN >,

and that
¢(L,S,N) > ¢adap(LvsaN) Z ¢min(L7S7N) Z ¢varmin(LaS7N)-
This follows from

H(L,S, N ) C Radap(L, S, N) C Rmin(L, S, N) C Ryarmin(L, S, N).

We have also introduced

the restricted regression

| (fﬁ.A/ ) fﬁ,//c )|

U(L,S,N) := max{
(£ 5:) IR

 BERWLS,N), NS, |N| N},

and the adaptive restricted regression

|(fp.y - fp,)]

I8, I : B € Ragap(L,S, N ), N DS, | AN :N}.
Y

Badap (L, S,N) := max{

The minimal adaptive restricted regression Qi (L, S, N) and variant of the minimal
adaptive restricted regression Qyamin(L, S, N) can be defined analogously:

|(fﬁ,/y?fﬁﬂ/c)|
1175, 117

|(fp /B e )l
/5,11

Omin(L,S,N) := max{ ! B € RBwin(L,S, N ), N DS, |N] :N}.

Dvarmin (L, S, N) ::max{ : B € Pyarmin (L, S, N ), N DS, | A :N}.

Then clearly

ﬂ(L,S,N) < 0adap(Lvst) < ﬁmin(lﬂS:N) < ﬂvalmin(L>S7N)~
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Some further relations are summarized in Figure 6.1.

As an implication of Lemma 6.26, we have, whenever the restricted regression is
less than 1,
O(L,S,N) > (1 =3(L,S,N))Anin(S,N),

and similarly
¢adap<L7S>N> > (1 - 0adap(L7SaN))Amin(S’N))

(pmin(L:S?N) 2 (1 - ﬁmin(Lvst))Amin(SvN)v

and
(Pvarmin(LaS)N) > (1 - ﬁvarmin(LaSaN))Amin(SaN)-

We have seen in Section 6.4 that bounds for the excess risk and the ¢;-error involve
the compatibility constant @comp(L,S), where we throughout have chosen (quite ar-
bitrarily) L = 3, which related to the required lower bounds on the tuning parameter

A.

Oracle bounds for ¢s-error

Corollary 6.13 /ﬂ\ <«— Lemma 6.11
L adaptive minimal adaptive
coherence —» . . ! .
restricted regression restricted eigenvalue

Theorem 7.3 —» L
il restricted

irrepresentable —> compatibility <= eigenvalue
Theorem 7.2 \U/ <«— Theorems 6.2 and 6.4

Oracle bounds for prediction and #;-error

Fig. 6.1 Some important relations between the various concepts. Theorem 6.4 and Lemma 6.11
consider general convex loss functions. Theorem 6.2 considers squared error loss. When applied to
the true active set Sy, the restricted eigenvalue conditions also imply oracle bounds for the ¢,-error
(see Lemma 6.10). The irrepresentable condition is defined in Subsection 7.5.1.

For bounds for the ¢,-error, we need the restricted eigenvalue ¢(L,Sp,2so) in
case we assume the truth is sparse, and the minimal adaptive restricted eigenvalue
Omin(L, S«,2s,) in case we use a sparse oracle approximation. Problem 6.15 shows
that Oyamin (L, S,N) can be bounded in terms of the orthogonality constants 6 y and
uniform eigenvalues.
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Problems

6.1. In the context of Section 6.2, let

IXB°l2
Vno

SNR :=

be the signal-to-noise ratio, and
=Y"Y/n,

where Y is the response variable (assuming for simplicity that Y has mean zero).
Verify that, for any 7 > 0, one has with probability at least 1 —2exp[—#2/2],

6

1 +SNR(SNR —2t/+/n) — 5 <

< 1+SNR(SNR+2t/\/n)+ by

Q

where

6.2. Suppose that |X | <lforalll<i<nand 1< j<p,andthatg,...,¢, are
independent centered random variables with second moment uniformly bounded by
I:

max ES <1.
1<i<n

Let
T = { max 2|e"XV)|/n < ZO},

1<j<p

with, for some ¢ > 0,
Ao :=4t+/log(2p)/n.

Show that

P(7)>1-2/1%,
using the result of Diimbgen et al. (2010) (see (6.5), and Section 14.10).

6.3. Theorem 6.2 is a corollary of

Theorem 6.5. Let
T = {max 2/e"XU |/n<ﬁﬂ}

1<;<

Take A > 4Ay. Then on 7,

2402,

2IXB — 13 /n+ 2B — Bl < 6|XB" — 13 /n+ — 5= o
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Use this to prove an oracle inequality assuming the conditions of Problem 6.2.

6.4. Theorem 6.4 gives a bound for || — B*||; where B* is the “oracle”. Because
B* may not be the parameter of interest, we consider the following. Let X be some
symmetric, positive definite matrix. For an index set S C {1,..., p}, with cardinality
slet Xy 1(S) := (Zjx)jkes be the s x s matrix consisting of the rows and columns
corresponding to the indices in S. Let furthermore A2, (£ (S)) be the smallest
eigenvalue of X | (S). Define, for some B° and B*, the sets Sy := Sgo, and S, := Sg-.
Let s, := |S,|. Show that (for any A > 0)

A2s,

MIB* =Bl < (B =B 2B B+ o5

+AIBY s -

Let ¢2(S.) be the X-compatibility constant (see Section 6.12). Since ¢x(S.) <
Amin(Z1,1(Sx)), the same result holds if we replace A2. (X1 1(S.)) by the compati-
bility constant ¢3 (S ). Extend the result to

. W
AlB* BVl se<||fﬁ*—fﬁo||>+H(W) AN s I

Here, fp = ):f:l Bivj, |- || = || - ||, and G is an increasing and strictly convex
function with convex conjugate H.

6.5. Prove the Basic Inequality of Lemma 6.4.

6.6. Consider the density estimation problem. Let Xi,...,X, be i.i.d. copies of X.
Suppose X has density p” with respect to some given o-finite dominating measure
u. Write 0 :=logp?, and let

7= {fﬁ = ,,-iﬁj%}’

where 3 ranges over the convex set

{B: [el L pyau <=}

- {f: [explian < w},

b(f) = log ( / expmdu).

Define

and for f € F,

Let the loss function be
pr=—f+b(f).
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First, show that the target is indeed f°. Show that the excess risk is the Kullback-

Leibler information: o
p
E(f) = /log<)p°du,
Prf

where pr = exp[f — b(f)]. What norm || - || would you use on F? Suppose for some
constant & > 0, that &5 < p® < 1/&. Let Fioea := {||f — /%]l < N}. Check the
quadratic margin condition.

Consider now the Lasso-density estimator
B = {—Pufp+b(fp)+ 2B}

Using Theorem 6.4, derive an oracle inequality for f = fB.

6.7. As in Problem 6.4, we consider the density estimation problem, but now with a
different loss function. Let X, . .., X, be i.i.d. copies of X. Suppose X has density f°
with respect to some given o-finite dominating measure u. Let || - || be the L(u)-
norm, and F be a convex subset of Ly(1). We assume f° € F. Let

pr = |fII*—2f, f €F.

Show that f° is indeed the target. Let .7 := { g = Z?:l Bjv;} be some convex
subset of F. Consider the Lasso-density estimator (or SPADES: see Bunea et al.
(2007b))

B :=argmin {||f|* —2P.f + 2| BI1 } -

Using Theorem 6.4, derive an oracle inequality for f = fB.
6.8. In classification, a popular loss is the so-called hinge loss (used for example in
support vector machines). Let {X;,Y;}7_, bei.i.d. copies of (X,Y), withY € {—1,1}.
Hinge loss is

pr(xy) = (1 =yf(x))+,
where z; = zl{z > 0} is the positive part of z. Define

n(-):=PY=1X=").
Show that the target can be taken as Bayes’ rule

O :=sign(2w —1).

Remark The Lasso (in particular the margin condition with Bayes rule as target)
is studied in Tarigan and van de Geer (2006). However, typically, Bayes’ rule will
not be well-approximated by linear functions. Therefore it makes sense to replace
Bayes’ rule by the alternative target

0 .
:=argmin Ppy,
Jeim gfey Pr
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where .7 1= {fg = 25'7:1 Bjw;} is the class of linear functions under consideration.

6.9. Consider the linear “link function”
p
fpx) =} Biw;().
j=1
We fix r < p, do not penalize f3,..., B, and use the ¢;-penalty
p
2 Y, 1B
Jj=r+l1

for the remaining p — r variables. We now show that one can reparametrize to hav-
ing the penalized base functions orthogonal to the unpenalized ones. Let ¥ :=

(Vi,.., W), and ¥ = (Ypq1,..., Y. Take
=Y+ qlzfjla
where '}’21?1 is the projection of ¥ on ¥. Moreover, take
= - q’;l .
Then ¥ and ¥ are clearly orthogonal. Check that for certain coefficients {3 i
p ro P
Y Biwi=Y Bivi+ Y B
=1 j=1 J=rl
6.10. Let X be some positive semi-definite matrix, and write
/5113 := B ZB.

The compatibility and restricted eigenvalue conditions depend on X. Let us write the
(L,S,N)-restricted eigenvalue as ¢ (L, S, N). Let £ be another positive semi-definite
matrix, and write

|12 = Z|lw = max 1Zik—Zjxl.

Show that
OF(L,S,N) > ¢3(L,S,N) — (L+1)*|| £ — Zws.

6.11. Provide a proof for Lemma 6.25, by applying the same arguments as in Lemma
6.20.

6.12. Show that for all 3,

Y (Lous) <Xl [T

keS \j¢S Jj¢S keS
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6.13. By using the definitions of [|X; »(4")|
6.30.

g and || Xy 2(4)||2,4, prove Lemma

6.14.

(a) Show that if X has ones on the diagonal, and all off-diagonal elements of X are
equal to 6, where 0 < 8 < 1, then its minimal eigenvalue is at least 1 — 0, so the
compatibility condition holds with q)czomp(S) > 1 — 6. Hint: note that one can write

I=(1-0)I+011,

where 7 is a p-vector of ones. Also show that with this X, the irrepresentable condi-
tion (see Subsection 7.5.1) holds for all S.
(b) More generally, let

L=(1-0)+0' e
where 7 € {—1,1}, and @ := diag(6,...,0,), with 0 < 6; < 1 for all j. Show that

A2 (2171(5)) > 1 —max 6,

mn kes

and in fact, that
¢azdap(LaS75) > 1— max 6.
keS

Check that

1-0(5)7'0(8) 25zl 0(8)/2(1 - 0(s)) !
£1(5) = - 0(s) - - 10BN 10 Pu0(5) 21— 0() "
’ L+750(S)2(1-6(5))10(s)!/?
and that 12 T o1/2 '
OV (S)T5eTe O/(S)(I—O(S))™
ZZ,I(S)EI_II(S): (T )1S2 5 ( )( —1 (1)2) N
, 1+l @'2(S)(1-6(S)) 10!/t
Does the irrepresentable condition hold?
(c) Suppose now that

Z=(1-0)I+0'2Re'?

where R is some correlation matrix. Show that

2
Padap (LS, 8) > 1— max 6.

6.15. Check that in Lemma 6.29, one may replace the sparse eigenvalue A2, (2N —

max
5) by the orthogonality constant Oy y_, defined in Subsection 6.13.4. Verify more-
over that
(L + 1)9N,Nfs N
A2 (S,N) N-—s’

min

'0varmin (L7 S,N) <



Chapter 7

Variable selection with the Lasso

Abstract We use the Lasso, its adaptive or its thresholded variant, as procedure
for variable selection. This essentially means that for Sp := {; : [3_? # 0} being the

true active set, we look for a Lasso procedure delivering an estimator S of Sy such
that § = Sy with large probability. However, it is clear that very small coefficients
\B]O| cannot be detected by any method. Moreover, irrepresentable conditions show
that the Lasso, or any weighted variant, typically selects too many variables. In
other words, unless one imposes very strong conditions, false positives cannot be
avoided either. We shall therefore aim at estimators with oracle prediction error,
yet having not too many false positives. The latter is considered as achieved when
1S\S.| = O(|S.]), where S, C Sy is the set of coefficients the oracle would select. We
will show that the adaptive Lasso procedure, and also thresholding the initial Lasso,
reaches this aim, assuming sparse eigenvalues, or alternatively, so-called “beta-min”
conditions.

7.1 Introduction

In this chapter, we confine ourselves to the linear model:
3 0
Yi= Y wi(X)B+e. i=1,...n,
=1

where {l//j}f:l is a given dictionary, X; € 27, i=1,...,n, is fixed design, and where
€1,...,&, are noise variables. We use the Lasso, its adaptive or its thresholded vari-
ant, as procedure for variable selection.

A key motivation for the exploration of thresholding and the adaptive Lasso for
variable selection is to relax the stringent irrepresentable conditions on the design
matrix. Thus, we have to tolerate some false positive selections. Furthermore, some

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 183
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 7,
© Springer-Verlag Berlin Heidelberg 2011
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false negative selections can not be avoided either, as one preferably refrains from
assumptions saying that the minimal non-zero coefficients B of the “true” regres-
sion are “sufficiently large” (we call this the “beta-min” condition, see Section 7.4),
since allowing for small non-zero regression coefficients appears to be much more
realistic. Consequently, it is impossible to infer the true underlying active set

So=1{j: B} #0},

since covariables j whose corresponding absolute coefficient | [5]0| is below a detec-
tion limit cannot be inferred from data (say with probability tending to 1 as n — o).

7.2 Some results from literature

For consistent variable selection with the Lasso, it is known that the so-called
“neighborhood stability condition” (Meinshausen and Biihlmann, 2006) for the de-
sign matrix, which has been re-formulated in a nicer form as the “irrepresentable
condition” (Zhao and Yu, 2006), is sufficient and essentially necessary, see Sec-
tion 2.6.1 and also Subsection 7.5.1 in the present chapter. A further refined analy-
sis in given in Wainwright (2007, 2009), which presents under certain incoherence
conditions the smallest sample size needed to recover a sparse signal. Because ir-
representable conditions or incoherence conditions are restrictive - they are much
stronger than restricted eigenvalue conditions (see Subsection 6.13.7 or van de Geer
and Biihlmann (2009) for an overview) - we conclude that the Lasso for variable
selection only works in a rather narrow range of problems, excluding many cases
where the design exhibits strong (empirical) correlations.

There is moreover a bias problem with ¢;-penalization, due to the shrinking of the
estimates which correspond to true signal variables. A discussion can be found in
Zou (2006), and Meinshausen (2007) (see also Subsection 2.8.2). Regularization
with the ¢,-“norm” with r < 1 (see Section 7.13) mitigates some of the bias prob-
lems but are computationally infeasible as the penalty is non-convex. As an inter-
esting alternative, one can consider multi-step procedures where each of the steps
involves a convex optimization only. A prime example is the adaptive Lasso which
is a two-step algorithm and whose repeated application corresponds in some “loose”
sense to a non-convex penalization scheme (see Zou and Li (2008) and Subsection
2.8.6). The adaptive Lasso was originally proposed by Zou (2006). He analyzed the
case where p is fixed. Further progress in the high-dimensional scenario has been
achieved by Huang et al. (2008). Under a rather strong mutual incoherence condi-
tion between every pair of relevant and irrelevant covariables, they prove that the
adaptive Lasso recovers the correct model and has an oracle property.

Meinshausen and Yu (2009) examined the variable selection property of the Lasso
followed by a thresholding procedure, when all non-zero components are large
enough. Under a relaxed incoherence assumption, they show that the estimator is
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still consistent in the ¢;-norm sense. In addition, they prove that it is possible to
achieve variable selection consistency. Thresholding and multistage procedures are
also considered in Candes et al. (2006). In Zhou (2009b, 2010), it is shown that a
multi-step thresholding procedure can accurately estimate a sparse vector B° € R?
under the restricted eigenvalue condition of Bickel et al. (2009). The two-stage pro-
cedure in Zhang (2009b) applies “selective penalization” in the second stage. This
procedure is studied assuming incoherence conditions. A more general framework
for multi-stage variable selection was studied by Wasserman and Roeder (2009).
Their approach controls the probability of false positives (type I error) but pays a
price in terms of false negatives (type II error). Chapter 11 describes the details.

7.3 Organization of this chapter

Section 7.4 discusses the so-called “beta-min” condition, which requires that the
non-zero (true or oracle) coefficients are sufficiently large.

Section 7.5 considers the irrepresentable condition in the noiseless case (i.e., the
case where € = 0) and its relation with other conditions. For necessity of the condi-
tions it suffices to consider the noiseless case.

Section 7.5 consists of 9 subsections.

A sufficient and essentially necessary condition to perform variable selection with
the Lasso is the irrepresentable condition. (A related result is that under additional
assumptions, the standard Lasso estimator fiy; is close to [50, not only in £,-norm
(g=1or1<g<2),butalso in /,-norm, see Zhang (2009b).) The irrepresentable
condition is defined in Subsection 7.5.1. After recalling the KKT conditions (Sub-
section 7.5.2), we give in Subsection 7.5.3 the necessary and sufficient conditions
for (exact) variable selection.

We show in Subsection 7.5.4 that the irrepresentable condition implies the compat-
ibility condition (which in turn is sufficient for oracle inequalities for the prediction
error of the Lasso), and in Subsection 7.5.5 that the adaptive restricted regression
condition (the latter being introduced in Subsection 6.13.2 as sufficient condition for
the compatibility condition) implies the irrepresentable condition. A simple gener-
alization of the irrepresentable condition, allowing for a given number of false pos-
itives, is given in Subsection 7.5.6.

The adaptive Lasso is a special case of the weighted Lasso. After a reparametriza-
tion, one easily sees that a sufficient condition for variable selection by the weighted
Lasso is the weighted irrepresentable condition. The weighted irrepresentable con-
dition is moreover essentially necessary if the non-zero true coefficients are large
enough, that is, if certain beta-min conditions hold. This is elaborated upon in Sub-
section 7.5.7.

We moreover show in Subsection 7.5.8 that a bound for the adaptive restricted re-
gression is sufficient for proving the weighted irrepresentable condition, and hence
variable selection of the weighted Lasso. This bound requires a great amount of
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separation between the weights inside and those outside the active set. We present
an example (Example 7.3) which implies that one cannot remove the requirement
on the amount of separation between weights, without imposing further conditions
on the Gram matrix. We show in Subsection 7.5.9, that with “ideal” weights inside
the active set, the weights outside the active set should be quite large. With an ini-
tial estimator used for the weights, this means that this initial estimator either needs
a rather fast convergence rate in sup-norm, or alternatively the sparsity sy should
be small namely of order (1/log p)'/3. Our conditions cannot be improved, in the
sense that there exist Gram matrices where the weighted irrepresentable condition
does not hold if our required amount of separation of the weights is not fulfilled (see
Example 7.3). We then have reached the conclusion that exact variable selection,
even with the adaptive Lasso, is in a sense ill-posed, it can only be accomplished
under very strong conditions. We therefore set a different (and perhaps more mod-
erate) aim, targeting at no more than O(s,.) false positives, s, < so being the number
of variables an oracle would select.

In most of the remainder of the chapter, our results concern the adaptive Lasso and
the thresholded Lasso. The two approaches share the problem of the choice of tuning
parameter. In Section 7.6 we give the definitions of the adaptive and thresholded
Lasso. Section 7.7 recalls our definition of the oracle *, and collects the results we
obtained in Chapter 6 for the prediction error, ¢1-error, and ¢;-error of the (weighted)
Lasso.

Section 7.8 treats the adaptive and thresholded Lasso, invoking sparse eigenvalue
conditions. It consists of six subsections. Subsection 7.8.1 gives the conditions on
the tuning parameters, and Subsection 7.8.2 gives the results under sparse eigen-
value conditions. We then compare these with the properties of the standard Lasso
in Subsection 7.8.3. The comparison of thresholding and adaptive Lasso is discussed
further in Subsection 7.8.4. We look at the implications for the number of false nega-
tives in Subsection 7.8.5. Finally, Subsection 7.8.6 checks how the theory simplifies
under so-called beta-min conditions as discussed in Section 7.4. As we will see,
beta-min conditions can (partly) replace sparse eigenvalue conditions.

For the proofs of the results in Section 7.8, we refer to van de Geer et al. (2010).
They are very much in the spirit of the proofs for the section following it, Section
7.9 (which are given in Sections 7.11 and 7.12).

Section 7.9 gives the results for the adaptive Lasso when sparse eigenvalue con-
ditions are avoided altogether. We again choose the tuning parameters to optimize
bounds for the prediction error (Subsection 7.9.1). We show that, depending on the
trimmed harmonic mean of the | [3;‘ , the adaptive Lasso still improves the one-stage
Lasso as regards variable selection, and can sometimes maintain a good prediction
error. These results are summarized in Theorem 7.10 of Subsection 7.9.2. Section
7.10 contains some concluding remarks.

The technical complements for the (adaptive) Lasso in the noiseless case are de-
rived in Section 7.11. The reason we again omit noise here is that many theoretical
issues involved concern the approximation properties of the two stage procedure,



7.4 The beta-min condition 187

and not so much the fact that there is noise. By studying the noiseless case first, we
separate the approximation problem from the stochastic problem. For the noiseless
case, Subsection 7.11.1 summarizes the prediction error of the weighted Lasso, and
Subsection 7.11.2 gives a bound for the number of false positives in terms of the
prediction error. We obtain in Subsection 7.11.3 some simple bounds for the initial
Lasso and its thresholded version. In Subsection 7.11.4 we derive results for the
adaptive Lasso by comparing it with a “oracle-thresholded” initial Lasso. When the
trimmed harmonic mean of the squared coefficients of the target §* is large enough,
the adaptive Lasso combines good variable selection properties with good prediction
properties.

The technical complements for the noisy situation are in Section 7.12.

The prediction error of least squares loss with a concave penalty was studied in
Section 6.11. Section 7.13 shows under sparse eigenvalue conditions, this method
also has O(s,) false positives, and thus is in that sense comparable to thresholding
and to the adaptive Lasso.

7.4 The beta-min condition

It is clear that the larger the smallest non-zero coefficient
0 - 1RO
in *= min |3;
B”lnin = min B

the easier is variable selection. We call a condition requiring some lower non-zero
bound on |B°|nin @ “beta-min” condition. Such a condition is generally not very
natural, nor very much in the spirit of uniformity in local neighborhoods (see Leeb
and Potscher (2003)). Nevertheless, beta-min conditions occur in many theoreti-
cal works. In our viewpoint, theoretical results that rely on beta-min conditions are
primarily useful as a benchmark but should always be considered with some reser-
vation.

A further aspect having to do with beta-min conditions follows from signal-to-noise
considerations. Let us explain this here. We study the situation where the truth
0 .
f/(X)=EY, i=1,...

n

21Ty

is linear: f0 = ?:1 l/ljﬁj(.). (If this is not the case, our results are to be understood
as selection results of the projection of f° on the space spanned by {l[/j}?:] .) The
active set of the truth is Sp := {j : ﬁjo # 0}, and so = |So| is its cardinality, i.e., the
sparsity index of f°. The typical situation is the one where the £-norm ||8°||, of the
coefficients B is bounded from above (and below). This has certain consequences
for the order of magnitude of most | [510 |. But let us first explain why bounds on || 3°||»
are “typical”. Let Q, := Y7, Ox,/n be the empirical measure of the covariables, and
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Il || be the Ly(Q,)-norm. The Gram matrix is

2:/wdeQn, vi=(Vi,...,¥p).

For the case of independent centered noise variables {&;}"_ | with variance o2, the
signal-to-noise ratio is

0
wrae 1
(o3

A “reasonable” signal-to-noise ratio is an SNR satisfying
n<SNR<1/n,
where 1 > 0, and in fact, where 1 is close to one. Clearly,

1B°ll2 < 112110/ Amin(£1,1(S0)),

where A2, (£ 1(Sp)) is the smallest eigenvalue of the Gram matrix £ 1 (So) corre-

sponding to the variables in So. Thus
1B°]|2 < (SNR)G / Awin (£1,1(S0))-

For the normalized case (i.e., the case where diag(X) = I), it holds that
Amin(£1.1(S0)) < 1. On the other hand, we generally hope we have a situation where
the eigenvalue Apin(£11(So)) is not very small, actually, that the compatibility con-
stant - or the restricted eigenvalue - is not very small, because this gives good result
for the prediction error of the Lasso (see Theorem 6.1). In other words, with a rea-
sonable signal-to-noise ratio and nicely behaved eigenvalues, the ¢-norm ||3°||»
cannot be too large.!

The upper bound for ||3%||> has important consequences for variable selection re-
sults based on beta-min conditions, as we always have

|B0‘min < ”ﬁOHZ/\/%v

i.e., the smallest coefficients are not allowed to be larger than 6//s, in order of
magnitude. Put differently, if there are a few large coefficients, this leaves little
space for the other coefficients. The latter may need to drop below the noise level.
When s is large, a few large coefficients means that the majority of the non-zero
coefficients are too small to detect.

!'Tt can generally not be really small either, e.g., in the normalized case, || f°||, = || ZS.’:] y/jﬁj‘?Hn <

81150 [IB°]l2 = (SNR)G /\/5o.- .
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7.5 The irrepresentable condition in the noiseless case

We let O be some probability measure on .2, and || - || the L,(Q) norm. An example
is Q being the empirical measure Q,, := Y1, 6x,/n.

The Gram matrix is

b) ::/q/Tu/dQ.

The entries of X are denoted by 0 := (¥}, W), with (-,-) being the inner product
in L(Q). We furthermore use the notation of Section 6.13. That is, for a given index
set S, we consider the submatrices

Z11(8) := (0jk) jkes> £22(S) := (0 k) jkes

and
Z2.1(8) == (0j) jeswes> Z12(8) =23 ,(S).

We let A2, (X 1(S)) be the smallest eigenvalue of X; (S).

min

Moreover, as usual, for § being a vector in R”, we denote by

ﬁjvslzﬁjl{jES}, j: 1,...,p.
Thus, S is the vector with only non-zero entries in the set S.

The largest eigenvalue of X is denoted by A2, i.e.,

A2 = max BTZB.
T 1B)p=1

We will also need the largest eigenvalue of submatrices containing the inner prod-
ucts of variables in S:

Ar%]ax(zl-,l(s)) ‘= max ﬁ,STZBS
lIBsll2=1

(Minimal adaptive) restricted eigenvalues (defined in Section 6.13) are denoted by
(P(L,S,N) = ¢2(L,S,N), ¢min(L,S,N) = ¢min.2(L,S,N), etc.

Let, for some given A = Ay > 0, Binic be the noiseless Lasso
Binit := argmﬁin{llfﬁ — 2P + Aanic | B 1 }-

Define its active set as Sini == {j : Binit,j 7 0}-
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7.5.1 Definition of the irrepresentable condition

The irrepresentable condition, as given in (2.20), depends on the Gram matrix X, but
also on the signs of the unknown “true” parameter 3°, whereas the compatibility
condition only depends on X and the set S. To compare the two (see Subsection
7.5.4), we assume the irrepresentable condition for all sign-vectors, and in fact for
all vectors T with || - ||-norm at most one.

Definition We say that the irrepresentable condition is met for the set S with cardi-
nality s, if for all vectors ts € R* satisfying || Ts|| < 1, we have

||22,1(S)21f11 () 7s[l < 1. (7.1)

For a fixed ts € R* with ||Ts||e < 1, the weak irrepresentable condition holds for ts,

if
1221 (8)E 1 (S)Tsle < 1.

Moreover, for some 0 < 0 < 1, the O-uniform irrepresentable condition is met for
the set S, if
max | Z2,1(8)E; | ()]l < 6.

[zsll=<1

7.5.2 The KKT conditions

We will frequently make use of the KKT conditions given in Lemma 2.1. In our
context, they read as follows:

KKT conditions We have
2% (Binit = B°) = —Ainit Tini
Here || Tt < 1, and moreover

Tinit, j/1{ Binit,j 7 0} = sign(Binicj), j=1,...,p.

We now turn to the noiseless version of the weighted Lasso. Let W := diag(w), with
wi= (wl,...,wp)T a diagonal matrix of positive weights. The weighted noiseless
Lasso is

ﬁweight = argrrbin{ ||fﬁ *fOHZ + 2'weight)l'init”‘/vﬁ ” 1 }7

with active set Syeight 1= {J : Bweight,j 7 0}-
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By the reparametrization 3 — ¥ := W f3, one sees that the weighted Lasso is a stan-
dard Lasso with Gram matrix

I, =wlzw

Hence, it inherits all the properties of the standard Lasso. We emphasize however
that X,, is generally not normalized, i.e., generally diag(X,,) # I. With appropriate
weights, this is exactly the strength of the weighted Lasso.

The weighted KKT conditions are:
Weighted KKT conditions We have

2X (ﬁweight - BO) = _)'wcightlinitWTweight-

Here || Tyeight || < 1, and moreover

Tweight,j]{ﬁweight,j 7é 0} = Sign(ﬁweight,j)a ] = 17- <y D-

Set
wis:=wl{jeS}, j=1,...,p.
Note that
hwsll3 = Y wi,
j€s
a quantity that will be of importance in our further considerations. We will need

conditions on the ratio ||wg||2/wii", where

min .
Wge =minwij.
i#s
The ratio ||ws, |2/ wggn should preferably be small, i.e., the weights inside the active
set should be small as compared to those outside the active set.

7.5.3 Necessity and sufficiency for variable selection

As we show in the next theorem, the irrepresentable condition for the true active set
So is in the noiseless case a sufficient condition for the Lasso to select only variables
in the active set Sy (for the noisy case, see Problem 7.5). We moreover establish
that it is essentially a necessary condition. This means that also in the situation with
noise, there is no way to get around such a condition (see also Zhao and Yu (2006)).
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Let 2
S{)elevant — {] |ﬁ]0| > Ainic Sup |21_7]1(SO)TSO||00/2}.

[I7s llo<1

Theorem 7.1.
Part 1 Suppose the irrepresentable condition is met for Sy. Then Sgelevam C Sinit C So,
and

[(Binit)so = BSy ll= < Ainic sup (|21} (S0) sy le=/2,

ll7sg llee <1

(soforall j € S(r)ele"am, the Binit,j have the same sign as the ﬁjo ).

Part 2 Conversely, suppose that S{flevant = So and Sinit C So. Then the weak irrepre-
sentable condition holds for the sign-vector Tgo = sign(ﬁgo).

Proof of Theorem 7.1.
Part 1 By the KKT conditions, we must have

2% (Binit — B®) = — Ainit Tinit

where || Tinit||eo < 1, and Tinig, j1{| Binit, j| # 0} = sign(Binit,j)- This gives
2%1.1(So) ((Binit)So — ﬁ€0> +2Z12(S0) (Binit)s5 = —Ainit (Tinit) 55

2%, 1(S0) ((ﬁinit)so - 5590> +2255(80) (Binit)s5 = —Ainit (Tinit)s5 -

It follows that

2<(ﬁinit)so - [380) +2271(S0)Z1 2(S0) (Bunit)sg = —AinitZ1 1 (S0) (Tinit) s

2%51(So0) <(Binit)So - ﬁ£0> +2222(S0) (Binit)s5, = —Ainit (Tinit) s¢

(leaving the second equality untouched). Hence, multiplying the first equality by
—(Binit)§,¢ 22,1 (S0), and the second by —(ﬁinn)gg,

*2(ﬁinit)§522,1 (So) ((5init)s0 - ﬁ§)0> - 2(ﬁinit)§822,l (So)Zi | (50)Z1,2(S0) (Binit) s

= zfinit(ﬁinit)ggEZ,l(SO)Zl_Jl (50) (Tinit)sg »

-2
min

2 One may invoke the bound SUP| g, <1 1211 (S0) T, lloo < /50Apim(Z1,1(So)). However, there are

important examples where the latter bound is too rough.
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~2(Binit) 55 Z2.1 (o) ((ﬁinit)so - ﬁ§)0> ~2(Bunit) $; £2.2(S0) (Bini) s = Ainie| (Bunie) s 1

where we invoked that Binic jTinit,j = |Binit,j|- Subtracting the second from the first
gives

2(Binit) 5 Z2.2(S0) (Binic) g, — 2(Bunic) 5 22,1 (S0) £ 1 (S0)Z1.2(S0) (Bunie) 5

= Ainit (Binit) s 2.1 (S0) Z 1 (S0) (init) 35 — Aiie || (B 1 1-

But by the irrepresentable condition, if | (Binic)sg [l1 # O,

(Bunit) ¢ 22,1 (S0) 4.1 (S0) (i) sy | < [ (Braie)sg 1111 22,1 (S0) Z1 1 (S0) (Tinit) 5 o

<[ (Bunie)sg [11-
We conclude that if ||(Binit)ss [[1 7# 0, then

(Bunit) 5 £2.2(S0) (Bunit) 55, — (Binit)§5 2,1 (S0) Zy 1 (S0) £1,2(S0) (Bunit) 5 < 0.
The matrix
$22(80) = £2.1(S0)Z1 1 (S0)Z1.2(S0)

is positive semi-definite. Hence we arrived at a contradiction. So it must hold that
I (ﬁinit)S(C) Ili =0, i.e., that Siyie C So.

We thus conclude that under the irrepresentable condition, the KKT conditions take
the form: for a vector Tipix € R? with || Tini|[e < 1, and with Tinie j1{ Binic,j # 0} =
sign(Binit, )

2X1.1(So) ((ﬁinit)so - [380) = —Ainit (Tinit) 5, »
and

2%, 1(80) ((Binit)so - 52()) = —Ainit (Tinit ) 55 -
It follows that

1 (Binit)so — By llee < Ainit| Z1 1 (S0) (Tinit) 55 |- /2

< Ainie sup [ Z1 1 (S0)Ts, [l /2

[N

If j e Sfflevam and Biyij = 0, we would have

|Buiej — BY = 1BY] > Ainic sup || 11 (S0)Tsplloe/2-

HTSO ngl
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This is a contradiction. Therefore j € S{)elevam implies that Bini ; # 0, i.e., that j €
Sinit- In other words, Sl(')ele"b‘nt C Sini- In fact, it implies sign(Binit,j) = sign(Bj(-)) for all
j c S(r)elevant'

Part 2 We now show that the weak irrepresentable condition for ‘cg is a necessary
condition for variable selection. Suppose that we indeed only select variables in the
active set, i.e., that Siyie C So. Then (Binit) s; = 0. The KKT conditions then take
again the form given above:

2% 1(So) ((ﬁinit)so - ﬁ§)0> = —Ainit (Tinit) 5, »

and

2%5.1(So) ((ﬁinit)so - ﬁ§)0> = —Ainit (Tinit) 55 -

This implies as before that sign(Bini,j) = sign( ﬁjo) for all j € SF'¥ant, Hence, as we
assumed Sy = S{fle"am, we have (Tinit)s, = Tgo' The KKT conditions are thus

2%11(So) ((Binit)So - ﬁ?o) = —Aini T3, »
and
2%51(So) ((ﬁinit)so - B§’0> = —init (Tinit ) 55 -
Hence
(Binit)so — BS) = AinieZ1 1 (S0)73, /2,
and, inserting this in the second KKT-equality,
£2.1(80) 211 (S0) 79, = (Tanit) 5 -

But then
122,1(S0) Z1 1 (S0) 75, lleo = || (Tinit) s oo < 1.

O

Corollary 7.1. Suppose the irrepresentable condition is met for some set Sy. Fix
some arbitrary B° = [380 with zeroes outside the set Sy, and let 0 := fpo =

Yjes, l//ijQ. Define, for a fixed L > 0,

Bovimar := argmin{||f — /|| : [|Bll1 <L},

i€ || /B — > = LASSO(f°,L,{1,...,p}), invoking the notation of Section
6.13. Then for Sprimar := {Bprimal,j 7 0}, it holds that Sprima C So.
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7.5.4 The irrepresentable condition implies the compatibility
condition

Theorem 7.1 proves that the irrepresentable condition implies variable selection.
One therefore expects it will be more restrictive than the compatibility condition,
which only implies a bound for the prediction and estimation error. This turns out to
be indeed the case, albeit under the uniform version of the irrepresentable condition.

Recall the compatibility constant
Ocomp (L, S) := rrgn{S\Ifﬁ 17 1Bslh = 1,1IBsc i <L}
(see Section 6.13).

Theorem 7.2. Suppose the 0-uniform irrepresentable condition is met for S. Then
for LO < 1,

Ooomp(L:S) > (1 —LO)* A (Z1.1(8)).
Proof of Theorem 7.2. Define

B* = argrrgn{SIIfﬁllzi [Bsllh = 1,||Bse |l < L}.

Let us write f* := fg«, f§ := fg; and fg. := fp. . Introduce a Lagrange multiplier
A €R. Asin Lemma 7.1, there exists a vector Tg, with || Ts|| < 1, such that 7! B =
B¢ 1|1, and such that

Z11(8)Bs +Z12(8)Bge = —Ats.
By multiplying by (B5)7, we obtain
5112+ (5 £5e) = = Al Bs -
The restriction || (|1 = 1 gives
IS 1P+ (5 f5e) = =2

We also have
Bs +Zi 1 (S)Z12(S)Bs = —AZ{ | 5. (7.2)

Hence, by multiplying with !,
IBS Il + 175 1 1 (5)Z12(S)Bse = —A75 2y 1 7s,

or
1= *Tstl_,l( )Z12(8)Bse — Zfll(s)fs
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< 0Bselli — Ats 1| (S)Ts
<OL— AT Z ) (S)7s.

Here, we applied the 6-uniform irrepresentable condition, and the condition ||B¢. ||1 <
L. Thus
1-0L<-Atlx 11 H(S)7s.

Because 1 — 0L > 0 and ‘L'ST ZE | (8)Ts > 0, this implies that A < 0, and in fact that
(1—-0L) < —As/Apin(Z11(9)),
where we invoked

511 ()T < |1Tsl13/Amin(Z1.1 () < 8/Agin (Z1.1(S)).

So
~A > (1= 0L) AL, (Z11(8))/s.

Continuing with (7.2), we moreover have
(Bse)" Z2,1(8)Bs + (Bse)" 2.1 (S) 11 (S)Z1.2(S) B

—A(Bse) X1 (S) 1 (S)7s.

In other words,
(fs,fs) + 1 (f5 )5l = =2 (Bse) 221 (S) 11 (S)7s,

where (f3.)F is the projection of fi on the space spanned by {j }res. Again, by
the 6-uniform irrepresentable condition and by || B¢ |1 < L,

[(B3)" 22,1 ()211 (S)7s)| < O1IBse |1 < 6L,

SO

—A(Bse) £2.1(S)Z{ ()75 = [A|(Bse)" 2.1 (S)Z 1 (S)7s

— 21 |(B3)" 221 ()57 1 ()%5| = —Ial6L = A6L.
It follows that

171 = 512 4+ 205 f30) + 1 e P
= = A+ (5. f5) + Ifsell®
+ (5 )+ ISP = =2 +26c = —A(1-6L)
> (1—-6L)*Agiu (Z1,1(5)) /s.
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7.5.5 The irrepresentable condition and restricted regression

We recall the definition of the adaptive S-restricted regression (introduced in Sub-
section 6.13.2, see also the overview in Subsection 6.13.7)

|(fpss fpse )|
Badap () := sup 7(;; ﬁ; .
l1Bse I <+/slIBsll2 Bs

The adaptive restricted regression was introduced to prove that when Uyqap(S) <
1/L, the adaptive (L,S,s)-restricted eigenvalue condition is satisfied for S, with
Gadap (L, S, 8) > (1 — Lagap(S)) Amin(Z1,1(S)) (see Corollary 6.11). We now show
that for L8 < 1, the condition ¥,4ap(S) < 1/L actually implies the 6-uniform irrep-
resentable condition.

Theorem 7.3. We have for all || Ts||e < 1,
12,1 (S)Z11 (5) s leo < Badap(S)-

Proof of Theorem 7.3. First observe that

1221 ()E1 1 (S)Tsllw = sup [BeZn1(S)E (S)7s]

Bsell1<1
= sup |(fﬁ5mfﬁs)"

[[Bsclli<t
where

Bs := X, (S)7s.
‘We note that

1/2
||fﬁsH2 B ||21,/l ($)Bsli3 1Z1,1(5)Bsll2 <1

VslBsll2 — IZ0a(S)BslallBsll - Vs

Now, for any constant L,

1221 ()Z1 1 (S)Tsllo = sup |(fpyer Sps)]
[|Bsell1<1

= sup [(fpger/fps)l/L-

[|Bselli <L

Take L = +/s|| Bs||> to find

. |(fﬁ c?fﬂ)|
||22-,1(S)21A11(S)TSH00 = sup Pse TIPS
' 1Bsel1<v5lBsl. VSIIBsll2
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| (Bge > /s

< sup —
1Bseli<vilgsl 1Bl

Theorem 7.3 proves the implication

Uadap(S) < 1 = irrepresentable condition.

The irrepresentable condition is quite restrictive, and illustrates that attempting to
prove the compatibility condition by checking whether ¥,qap(S) < 1, i.e., via the
irrepresentable condition, is not the best way to go. Because ¥qqp(S) < 1 is implied
by the coherence condition (with g = oo, see Lemma 6.28), we obtain as a by-product
that the irrepresentable conditions follows when correlations are small enough:

Corollary 7.2. Suppose that for some 6 > 0,

2
Vsmax s /Yies Oy

AL ELE)
min 1,1

Then in view of Corollary 6.13, Uadap(S) < 6 and hence by Theorem 7.3, also
1Z2,1(8) 211 (8)7s]|.- < 6,

i.e., for 0 < 1 the O-uniform irrepresentable condition holds.

The next example shows that there are X for which the bound given in Theorem 7.3
cannot be improved .

Example 7.1. Let So = {1,...,s0} be the active set, and suppose that

Zin Zi2
Y= ’ ),
(22,1 %)

where X | :=1 is the (so X so)-identity matrix, and
2271 = p(be{)a

with 0 < p < 1, and with b; an so-vector and b, a (p — so)-vector, satisfying ||by ]|, =
|b2]|2 = 1. Moreover, X5 » is some ((p —so) X (p — so))-matrix, with diag(X,,) =1,
and with largest eigenvalue A2, (X2) and smallest eigenvalue A2, (X5).

In Problem 7.2, it is shown that the compatibility condition holds for any S, with
Poomp(L,S) = Az (Z22) — p. Moreover, for by := (1,1,...,1)" /\/50 and by :=
(1,0,...,0)7, and p > 1/ /S0, the irrepresentable condition does not hold for Sp.
Hence, for example when
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1 0 - 0 p/yso O 0
() 1 () P/\/% () 0
0 0 0 : : :
5o 0 0 1 p/\/so 0 -+ 0 7
p/vso P/\so o p/y/so 1 e --- 6
() () () 6 1 9
0 0 0 0 o - 1

where p=0=1/4, then the compatibility condition holds for all § with @comp(L,S) =
1/2, the irrepresentable condition does not hold for so > 16. We note that the bound
for the number of false positives of the initial Lasso, as presented in Lemma 7.2
(Section 7.8.3 ahead), depends on A2,,. In this example the maximal eigenvalue is
A2 (Z22) of Xy is at least as large as §(p —so).

7.5.6 Selecting a superset of the true active set

Remember that S is defined as the active set of the truth 8°, i.e.,

So={j: B} #0}.

In Theorem 7.1 Part 1, we have not required a beta-min condition, i.e., for j € Sy,
the | ﬁjo\ can be arbitrary small. This means that in fact we may replace Sy by any set
A containing Sy. If the irrepresentable condition holds for the larger set .4, one
can conclude by Theorem 7.1 Part 1, that Sjp C A

Definition We say that the (S,N)-irrepresentable condition holds for the set S if for
some N D S with size N,

sup (| 221 (A)E ] (A )Tl < 1.

7 llw<t

Corollary 7.3. Suppose that the (So,N)-irrepresentable condition holds.
Then |Sinit\SO| <N —sy.

This approach can be rather useful, as illustrated in the next example.

Example 7.2. We continue with Example 7.1: Sy = {1,...,s0} and
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1 0  p/vso 0 0
0 1 0 p/\so O 0
0 0 0 : :
5o 0 0 1 p/\/so 0 -+ 0
p/vso pP/\so o p/y/so 1 6 --- 0
0 () () 6 1 9
0 () () 6 9 1

with p < 1—0 (possibly 8 = 0). Variable sy + 1 is correlated with all the variables
in the active set Sy. It will be selected by the Lasso, because it can take care of part
of all the coefficients. Now, selecting just one false positive may be thought of as
being acceptable. We add variable so + 1 to the set Sp:

N =SoU{so+1}.

The set .4 obviously satisfies the irrepresentable condition. Hence S, C .A4.

One may verify that the above example can be extended to having pso additional
variables outside the active set Sy, which is still perhaps an acceptable amount. If
the aim is to have no more than N — s false positives, one may accomplish this by
requiring the (Sp, N)-irrepresentable condition. A choice N proportional to sy seems
reasonable. (In Lemma 7.2 and Lemma 7.3 respectively, we show by different means
that the Lasso has no more than an order of magnitude O(sg) of false positives,
provided Amax remains bounded, respectively certain rather severe sparse eigenvalue
conditions hold.)

7.5.7 The weighted irrepresentable condition

Recall that W = diag(wy,...,w)) is a matrix of positive weights. Let

Wy = W171 (S), Wye := W272(S).

Definition We say that the weighted irrepresentable condition holds for S if for all
vectors Ts € RY with || Ts||. < 1, one has

[Wee' 221 ()21 (S)WsTs]|oo < 1.
The weak weighted irrepresentable condition holds for a fixed ts with || Ts|| < 1, if

[Wee' 22,1 (8)Z1 ] ($)WsTs oo < 1.
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Define

S{)e,{f/vant = {J : |ﬁjo‘ > AweightAinic  SUp ||2f11 (S0)Ws, Ts, 00/2}.

ll7sp =<1

The reparametrization 8 +— y := W~!8 leads to the following corollary, which is
the weighted variant of Theorem 7.1.

Corollary 7.4.
Part 1 Suppose the weighted irrepresentable condition is met for Sy. Then S{f_lv‘f,"am C
Sweight C S, and '

H(Bweight)So _ﬁg‘)oHoo < )vweight}{finit sup Hzl_,]1 (SO)WSOTSOHw/Q««

75l <1

Part 2 Conversely, if So = Sff%f,“‘m and Syeighy C So, then the weak weighted irrepre-
sentable condition holds for ‘L'go, where Tgo = sign(ﬁgo).

7.5.8 The weighted irrepresentable condition and restricted
regression

The weighted irrepresentable condition can be linked to the (unweighted) adaptive
restricted regression (a weighted variant of Theorem 7.3), as follows.

Theorem 7.4.
—1 —1 < [wsll2 5
sup [[Wee Lo 1(S)Z; 1 (S)WsTsleo < min adap (S)-
[[Tslle<1 ' SWse

Proof of Theorem 7.4. Clearly,
IWse' Z2,1(S)E; 1 (S)WsTsleo < [ 22,1 () Z1 | (S)Wss|lee /W,

Define
Bs = Z; | (S)WsTs.

Then

[Wee Zo1 (S)Z1 | (S)WsTslleo = sup |5 Wee' Z2.1(S)Z | (S) W]
' [lvsell1<1

= sup  |BEZi(S)Bsl = sup  |(fpye.SBs)
[Wse Bse 11 <1 [Wse Bse [l1<1
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< osup [(fpger /Bl

[IBse l1<1/wgén
O 180/

1B [ < hws a1 Bs o iz (WS 1211 B2

N sup |(fpge £ 1FslI° _
IBse <l sl pugin sl w2l Bl

But

-
[ /3512 B TSTWS£1,1(S)WS'CS HWS’CS||2<1

IesTelBsle ~ erwae, famorpwer 5l

We conclude that

_ _ |(fpger /35|
Wse" £2,1(8) 2y} (S)Ws ts | < sup %
[IBsell1<lwsll2l|Bsll2/wge" Bs

lwsl2
Vi Dnian(5):

Corollary 7.5. Suppose that

Wso 12
”70|Jninﬁadap(50) <L

SoW e
056

Then, by Corollary 7.4, Sweight C So. In particular, if X ; < 1 for all j, then, inserting
the general bound \/so/Amin(Z1,1(S0)) for Bagap(So) (see Lemma 6.27) gives that
the inequality A

[lws, Hz/W?gm < Amin(Z1,1(50)), (7.3)

implies Syeight C So.

Example 7.3. Take X as in Example 7.1, with b; changed to by = wg, /|/ws, |2, and
byto by = (0,...,1,0,...)", where the 1 is placed at arg min jcge w;. Then

sup (22,1 5y 1 Ty llew = P lIwso 11/ [ws I
[l7s, llo<1

and furthermore,

sup Hnglzz,lzfllWSOTSon = P||Wso|\2/W?gm-

1y lo<1
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The above example shows that there exist Gram matrices X which satisfy the com-
patibility condition with, for all L > 0, ¢c20mp (L,So) =1—p, where p € (0,1), and
where the adaptive Lasso needs the separation

lwso ll2/wsg" < 1/p. (7.4)

to perform variable selection. Roughly speaking, this means that the weights in S§
should be an order of magnitude ,/so larger than the weights in Sp. See also Corol-
lary 7.8, where the same amount of separation is required for the adaptive Lasso to
perform exact variable selection.

We now know from Example 7.3 that a compatibility condition alone does not suf-
fice for proving variable selection with the weighted Lasso. If one aims at substan-
tially relaxing the bound (7.3), one needs more restrictions on X, for example as in
Theorem 7.4, with the adaptive restricted regression ﬁadap(So) much less than the
generic bound /50/Amin(Z1,1(S0)) of Lemma 6.27.

7.5.9 The weighted Lasso with “ideal” weights

In the case of the adaptive Lasso, the ’ideal” weights that we target at have w? =

1/] ,BJQ|, j € So. With “ideal” weights w’, we obviously have that

15, 13 = 50/ 1B lfarms
where
o . (1 L\
1B B 1= (OZSW)
is the harmonic mean of the squared non-zero coefficients.

Example 7.3 in Subsection 7.5.8 proves that the bound (7.3) is also a lower bound.
‘We show in Lemma 7.1 below that with the “ideal” weights in the'a'ctive set Sp, and
with outside the active set w; = 1/|B}""|, j ¢ So, for some initial 8™, the inequality
(7.3) implies that ||[3§gt|\w has to be of order || £°||/so.

Lemma 7.1. Let us take w; = W(j)», JE€Soand w; = 1/|ﬁ]i-nit , j & So, where Bt is
some initial estimator of B. Suppose moreover that the condition (7.3) (which is
sufficient for having no false positives) holds. Then

1B llee < 1721 /50-
Proof. It is clear from the Cauchy-Schwarz inequality that

50 < [[wS, l1211B°]l2-
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Moreover,
1Bl < 17211/ Amin (Z1.1(S0))-

Hence we get
1S, ll2 > s0Amin(£1,1(50))/11.°1]-

Condition (7.3) now gives

1
e < Amin(Z1,1(50))/ sy | < 1011 /s0-
S

Remark 7.1. With the Lasso, we get an initial estimator f;y; satisfying

| (Binit)sg [l = O(Ainitn/50)

(see Lemma 7.6). Unless this bound can be improved, and for Aiyi<o+/log p/n,
where ¢ = || f°||, we thus need that so = O((n/log p)'/?) for variable selection with
the adaptive Lasso in the worst case scenario.

7.6 Definition of the adaptive and thresholded Lasso

We now return to the noisy case. We will use the standard Lasso as initial estimator
for the second stage adaptive Lasso, and write this initial estimator as

B = argmind 13200 1306+ A1 .
i=1

where fﬁ = Zf: 1 B V. We let finit = fﬁ- . The active set of the estimator Binit is
Sinit == {Jj : Binit,j # 0}, which has cardinality §iy; = |Sinic]-

7.6.1 Definition of adaptive Lasso

The adaptive Lasso (Zou (20006)) is defined as

n

. (1 p
ﬁadap = argrrkm{n Z(Yl _f[i (Xi))z +ladap/linit Z Wj|ﬁj|}a
=

i=1
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where the weights {w;} are functions of the initial estimator Binit. The most com-
monly applied adaptive Lasso takes

1

‘Binit,j|7 9 Py

with the convention that when ﬁinit’ ;=0 (i.e., when w; = o), the j-th variable is
excluded in this second stage. In practice, there may be a threshold, or precision
level, Aprecision > O, that is, all variables j with | Binit, il < Ainic are excluded in the
second stage:

1
w;j = = =
|ﬁinit,j|l{|ﬁinit7j‘ > )Lprecision}

This can be thought of as the ruthless Lasso.

,j=1,...,p.

Another procedure is to give the variables j that are not selected in the first stage, a
second chance in the second stage. We then take

1
Wj =
|ﬁinit,j| \ A'precision

We call this the conservative Lasso.

j=1,...,p.

In the sequel, we will only consider the standard adaptive Lasso with weights w; =
1/|Binit, j| for all j. We write fadap := fﬁadap’ with active set Saqap := {Jj : Badap,j 7 0},
respectively.

7.6.2 Definition of the thresholded Lasso

Another possibility is the thresholded Lasso with refitting. Define

Sthres = {] : |B\init,j‘ > zfthres}v (75)

which is the set of variables having estimated coefficients larger than some given
threshold Ayyes. The refitting is then done by ordinary least squares:

n

N . 1
Dhres = arg  min - Z(Y, — /B (X))%

“FSihres - i=1

We write
Jthres 1= fﬁlhm .
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7.6.3 Order symbols

The behavior of the Lasso, the thresholded Lasso and adaptive Lasso depends on
the tuning parameters, on the design, as well as on the true f°, and actually on the
interplay between these quantities. To keep the exposition clear, we will use order
symbols. Our expressions are functions of n, p, {y;(X;), j=1,...,p, i=1,...,n},
and £°, and also of the tuning parameters Ainit, A¢hres, and Aadap- For positive func-
tions g and h, we say that g = O(h) if ||g/h||- is bounded, and g =< h if in addition
I72/g|| is bounded. Moreover, we say that g = Ogye(h) if ||g/h|| is not larger than
a suitably chosen sufficiently small constant, and g =< 4 if in addition ||#/g||« is
bounded.

7.7 A recollection of the results obtained in Chapter 6

The initial Lasso estimator is studied in Section 6.2. and we recall the results here.
We combine it with Lemma 6.10, which gives conditions for convergence in /5.
The definition of the compatibility constant @comp(L,S) and of the (minimal adap-
tive) restricted eigenvalue ¢ (L,S,N) (@min(L,S,N)) is given in Section 6.13 (see
Subsection 6.13.7 for an overview). We write @comp(L,S) := @eop, £ (L,S), and
¢(L,S,N) = ¢z(L,S,N), and so on. We recall the approximation results of Sec-
tion 6.12, that is, for a X “close enough” to 2, the 2-c0mpatibility constants and
(minimal adaptive) X-restricted eigenvalues inherit their properties from the X-
counterparts. as long as there is enough sparseness.

Let
T = { max 2|(&, ¥j)n| gl{)},
1<j<p
be the set where the correlation between noise and covariables does not exceed a
suitable value A (the “noise level”).

Typically, A9 can be taken of order /log p/n. Lemma 6.2 which has normally dis-
tributed errors, serves as an example, but the results can clearly be extended to other
distributions.

Theorem 7.5. Suppose the (3,Sy)-compatibility condition holds, with constant
Ocomp(3,80). Assume moreover we are on 7, and that Ainie > 2Ao. Then

Hfinit _folli + 2'initHﬁinit - ﬁOHl < 4Ai%1its0/¢czomp(3’so)-

If moreover the (3,Sy,2s0)-restricted eigenvalue condition holds, with restricted
eigenvalue ¢(3,S0,2s0), then
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N 2012, 50
3912 < init .
||ﬁ1ﬂ1t B ||2 — ¢4(37S072S0)

See Theorem 6.1 and Lemma 6.10.

One immediately obtains the following screening corollary.

Corollary 7.6. (Screening Corollary) Suppose the beta-min condition

1B min > 42initS0/ Yeomp (3,50), (7.6)

or alternatively, the beta-min condition

1B min > 2Ainicv/550/92(3,80,250)- (7.7

Then on 7, Sinit O So.

The screening property is discussed in e.g. Section 2.5, and also in Chapter 11
where it is used for obtaining asymptotically correct p-values by (multi) sample
splitting. It holds for the one stage Lasso if the truth has large enough coefficients.
If 1/¢(3,80,250) = O(1), Corollary 7.6 assumes an order of magnitude Ainii\/So
for the smallest coefficient, whereas signal-to-noise arguments, with noise vari-
ance 62, say that the smallest coefficient cannot be larger than 6 /1/s, in order of
magnitude. We conclude that the beta-min condition (7.7) implicitly assumes that
50 = O(0/Ainit)- With Ajpiy < 04/log p/n, this means so = O(y/n/logp). By the
same arguments, beta-min condition (7.6) means so = O((n/logp)'/?) (compare
with Remark 7.1 in Subsection 7.5.9).

We now leave the beta-min conditions aside, and consider a sparse approximation of
B°. Indeed, the sparse object to recover may not be the “true” unknown parameter
BY of the linear regression. It may well be that many of the | [3]0\ are non-zero, but
very small. Thus, its active set

So=1{j: B} #0}

can be quite large, and not the set we want to recover. More generally, we aim at
recovering a sparse approximation f* of the regression f°, when f? itself is not
necessarily sparse. Our proposal will be to target at the sparse approximation that
trades off the number of non-zero coefficients against fit. This target was introduced
in Chapter 6, Section 6.2.3. We recall its definition here.

Given a set of indices S C {1,..., p}, the best approximation of f° using only vari-
ables in S is
fs = fys == arg min [|f — f°|la,
F=1gg
that is, fg is the projection of f° on the span of the variables in S. Our target is now
the projection f* :=fs,, where
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5. i=arguin{ s~ 1213+ 7A3lS1/ 0y 6.5) .

This is in relation with the oracle result of Theorem 6.2, although we have changed
the constants (this is only due to some inconsistencies over the chapters in the choice
of the constants). Alternatively, one could insert Lemma 6.12 in Section 6.10, but
the latter (as price for considering general weights) has @comp(3,S) replaced by
¢adap(6vs7 |S|) = ¢min(6’Sa |SD

We minimize here over all § C Sy, so that the oracle is not allowed to trade non-zero
coefficients against compatibility constants. This facilitates the interpretation.

To simplify the expressions, we assume moreover throughout that

15 = 7 = O(Adigse/ Boomp (3,5+)) (7.8)

which roughly says that the oracle “squared bias” term is not substantially larger
than the oracle “variance” term. For example, in the case of orthonormal design,
this condition holds if the small non-zero coefficients are small enough, or if there
are not too many of them, i.e., if

Y IBYP = 0(A%s.).
BYP<TAZ,
We stress that (7.8) is merely to write order bounds for the oracle, which we compare
to the ones for the various Lasso versions. If actually the “squared bias” term is the
strictly dominating term, this does not alter the theory but makes the presentation
less transparent.

As before, we refer to f* as the “oracle”. The set S, is called the active set of f*,
and B* := b5+ are its coefficients, i.e., = fB*'

We assume that S, has a relatively small number s, := |S,| of nonzero coefficients.
Inferring the sparsity pattern, i.e. variable selection, refers to the task of correctly
estimating the support set S, or more modestly, to have a limited number of false
positives (type I errors) and false negatives (type II errors)3. It can be verified that
under reasonable conditions (e.g. i.i.d. standard Gaussian noise and properly chosen
tuning parameter A) the “ideal” estimator (with £p-penalty)

B :=argngn{||Y—fﬁ||%/n+M|{j: ﬁ;#O}I},

has O(s,) false positives (see for instance Barron et al. (1999) and van de Geer
(2001)). With this in mind, we generally aim at O(s,.) false positives (see also Zhou
(2010)), yet keeping the prediction error as small as possible.

3 Recall that, for a generic estimator B and active set S, a type I error is a non-zero estimate 3,—
when j ¢ S.. A type Il error occurs when f3; = 0 while j € S,.



7.7 A recollection of the results obtained in Chapter 6 209

Theorem 7.6. Suppose Ainic > 2A¢. Let

TA2
f f 2 init® ,
comp || || ¢C0mp(3,s*)
and 2
7
= = R+ i
mm n mm (6 S*, 2S*)
Oon 7,
||finit _f0||2 < 26(:20mpa
and .
||Bm1t - ﬁ* Hl < Sscomp/)’lmtv
and

Hﬁmlt _ﬁ ||2 <10 mm/(amlt\/g)

Theorem 6.2 contains (modulo the alternative constants) the first part of Theorem
7.6 above. We moreover combined it with Lemma 6.9, much in the spirit of Lemma
6.11. The ¢;-result is the same as in Corollary 6.5, with slightly improved constants
exploiting the specific situation.

Note that @min(6,S%,2s,) is always at least as small as @comp(6,S5+), so that Seomp <
6min'

With order symbols, the important quantities become more visible:

Theorem 7.7. Let A > 2Ag. We have on 7,

P02 _ 1 2
”flnlt fOHn - |:¢czomp(67S*) ] O(Amlts*)v
and |
”ﬁinit - ﬁ*Hl = [¢c20mp(6’s*)] O(A'inits*)v
and |
BBl = | e 57| O

We did not yet present a bound for the number of false positives of the initial Lasso:
it can be quite large (see Problem 7.7) depending on further conditions as given in
Lemma 7.3. A general bound is presented in Lemma 7.2.
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7.8 The adaptive Lasso and thresholding: invoking sparse
eigenvalues

In this section, we use maximal sparse eigenvalues Amax(N) and uniform eigenval-
ues Amin(S,N), as well as minimal adaptive restricted eigenvalues @pi,(S,N) and
@varmin (S, N). See Subsection 6.13.7 for their definition.

7.8.1 The conditions on the tuning parameters

The following conditions play an important role. Conditions A and AA for thresh-
olding are similar to those in Zhou (2010) (Theorems 1.2, 1.3 and 1.4).

Condition A For the thresholded Lasso, the threshold level Mpes is chosen suffi-
ciently large, in such a way that

1 ]
<5 | Ainit = Osut(Adhres)-
l: [%Iin(67S*72S*) ni su res

Condition AA For the thresholded Lasso, the threshold level Agyes is chosen suffi-
ciently large, but such that

5]
——————— | Ainit <suff Mthres-
|: r%qin(67S*’2S*)

Condition B For the adaptive Lasso, the tuning parameter Aqgap is chosen suffi-
ciently large, in such a way that

|: Amax(s*)
3 (6,S,,25.)

varmin

:| 2'init = Oguf (/Ladap)-

Condition BB For the adaptive Lasso, the tuning parameter Aqgap is chosen suffi-
ciently large, but such that

|: Amax(s*)
¢3 (67S*52S*)

varmin

:| linit suff zfadap~

Remark 7.2. Note that our conditions on Agres and Ayqap depend on the ¢°s and A’s,
which are unknown. Indeed, our study is of theoretical nature, revealing common
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features of thresholding and the adaptive Lasso. Furthermore, it is possible to re-
move the dependence of the ¢’s and A’s, when one imposes stronger sparse eigen-
value conditions, along the lines of Zhang and Huang (2008). In practice, the tuning
parameters are generally chosen by cross validation.

The above conditions can be considered with a zoomed-out look, neglecting the
expressions in the square brackets ([ - -]), and a zoomed-in look, taking into account
what is inside the square brackets. One may think of A as the noise level. Zooming
out, Conditions A and B say that the threshold level Ag,es and the tuning parameter
Aadap are required to be at least of the same order as Aiy, i.e., they should not drop
below the noise level. Assumption AA and BB put these parameters exactly at the
noise level, i.e., at the smallest value we allow. The reason to do this is that one
then can have good prediction and estimation bounds. If we zoom in, we see in
the square brackets the role played by the various eigenvalues. It is at first reading
perhaps easiest to remember that the ¢’s can be small and the Apmax(+)’s can be large,
but one hopes they behave well, in the sense that the values in the square brackets
are not too large.

7.8.2 The results

The next two theorems contain the main ingredients of the present section. We first
discuss thresholding. The results correspond to those in Zhou (2010), and will be
invoked to prove similar bounds for the adaptive Lasso, as presented in Theorem
7.9.

The set .7 is throughout the set defined in Section 7.7, that is

T = { max 2|(&, yj)a| < )LO}.

1<j<p

Theorem 7.8. Let Ay > 2. Suppose Condition A holds. Then on 7,

R A2
o= 121 = A (5)] S 08,

init
and A (1) A
B _R*|, — max | Sx hres Dinies,
e~ Bl = [ )] 20 0 ),
and

O(Afinit\/g)a

A Amax (8«
s Bl = | o) | S

Amin (S* 128 ) )Linit

and
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2

1 A1n1t 0 ( )
¢§lm(6,5*,2s*) A2

Theorem 7.9. Suppose Condition B holds. Then on 7,

thres
Amax (S * ) :| la

‘SAthres \S* ‘ =

I da;
otan — £2)12 = [ O(A 252,

(Pvarmin (67 S, 2s, ) a'1n1t
and
1/2
N * A S 2'a
”ﬁadap_l3 Hl = [ 32 max(5) :| )bdapo(afinits*)v
¢\;armin (67 S*’ 2S*) init
and
At (5-)urmin (6,52, 25:)
N * * Ky L% dap
1Badap = Bl = [ it } 200 0 i),
. Varmm(6 S*73S*) )‘lmt it
" 2,0(52) 60 A
A A A S ini
Ky S* _ max max \ 9 * :| nit 0 54).
| adap\ | |: mm(6 S*,ZS*) ¢Va_rm1n(6 S*,ZS*) A«adap ( )

Theorems 7.8 and 7.9 show how the results depend on the choice of the tuning
parameters Agyres and A,dap. The following corollary takes the choices of Conditions
AA and BB, as these choices give the smallest prediction and estimation error.

Corollary 7.7. Suppose we are on 7. Then, under Condition AA,

» A2 (54)
|ﬁhres—f°||£=[m;ggm} 0 2us.), 19)
and A ( )
A~ S
b 8= [ ) o
Btares I Amin(S+,25.)92. (6,S.,25.) (Rinics)
and A ( )
Do — B[l — max \ S :|0 A 0,
Ibawes — Bl [ s 0 )
and

Sthres \ S| = O(s:). (7.10)
Similarly, under Condition BB,

A A2 (s,
”fadap_f()ll%: l:m(dg(S)Zs):| O(lfms*) (7.11)
varmin *y 0%
and Aan(52)
N * max (%
— = V—_—_— 7 O L. ,
”ﬁadap ﬁ ||1 |: varmm(6 S*72s*):| (zqmts*)
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and

||ﬁadap_ﬁ*H2: |: 3 Amax(s*)

O(Aip Sk ),
mein(é’S*73s*)¢varmin(67s*723‘*):| (Riier/5:)

and
A 2

. L) 02 6,S,,2s.
|Sadap\s*:[max<s> (6,5.,25.)

varmin

ok (6,5.,2s.)

} 0(s.). (7.12)

7.8.3 Comparison with the Lasso

At the zoomed-out level, where all ¢’s and A’s are neglected, we see that the thresh-
olded Lasso (under Condition AA) and the adaptive Lasso (under Condition BB)
achieve the same order of magnitude for the prediction error as the initial, one-stage
Lasso discussed in Theorem 7.7. The same is true for their estimation errors. Zoom-
ing in on the ¢’s and the A’s, their error bounds are generally larger than for the
initial Lasso.

For comparison in terms of false positives, we need a corresponding bound for the
initial Lasso. In the paper of Zhang and Huang (2008), one can find results that
ensure that also for the initial Lasso, modulo ¢’s and A’s, the number of false pos-
itives is of order s.. However, this result requires rather involved conditions which
also improve the bounds for the adaptive and thresholded Lasso. We briefly address
this refinement in Lemma 7.3, imposing a condition of similar nature as the one used
in Zhang and Huang (2008). Also under these stronger conditions, the general mes-
sage remains that thresholding and the adaptive Lasso can have similar prediction
and estimation error as the initial Lasso, and are often far better as regards variable
selection

Recall that A2

nax 18 the largest eigenvalue of 2. It can generally be quite large.

Lemma 7.2. On 7,

. A2
[Sinit\Sx| < {max} O(sy).
" (Pczomp (67 A )
See Problem 7.7 for an example where the bound of Lemma 7.2 is sharp.

We now discuss the above announced refinement, assuming a condition correspond-
ing to the one used in Zhang and Huang (2008) (compare with Subsection 6.13.5).

Condition D It holds for some t > s,, that
AZ

D(Z‘,S*) = {%nﬁg’);j)[} = Osuff(1>-
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Lemma 7.3. Suppose we are on 7. Then under Condition D,

|Sinic\ S| = {%ﬁ)(é;)} <1 - 10) S(;’fﬁ))>_lo(s*).

Moreover, under Condition B,

Amax (S* ) :| 12
¢varm1n(6 S, 25*) min (6 S*,zs*) ladap

|§adap\S*‘ = Amax( ) [

2
+| A (1) oy (6,5 o532 005

D(t,s
Ovarmin (0, Sx, 255) mm(é Sy, 28%) ladap
Under Condition BB, this becomes

max(t) :l |: Varmm(6 S*,ZS*)(Pcomp(é S*)
¢comp(6as*) ¢éin(6,S*,2s*)

+{ varmm(6 S*72s*)¢comp(6 S*)
(6,84,254)

R 1/2
|Sadap\S*|:|: ] O(s,) (7.13)

]D(t,s*)O(s*).

mm

Under Condition D, the first term in the right hand side of (7.13) is generally the
leading term. We thus see that the adaptive Lasso replaces the potentially very large

constant
(1 _ D(t.s.) )1
Osuff( 1)

in the bound for the number of false positives of the initial Lasso by

|: varmm(6 S*vzs*)¢comp(6 S*):| 12
$4(6,S4,25) ’
a constant which is close to 1 if the ¢’s do not differ too much.

Admittedly, Condition D is difficult to interpret. On the one hand, it wants ¢ to be
large, but on the other hand, a large ¢ also can render Apax(¢) large. We refer to
Zhang and Huang (2008) for examples where Condition D is met.

7.8.4 Comparison between adaptive and thresholded Lasso

When zooming-out, we see that the adaptive and thresholded Lasso have bounds of
the same order of magnitude, for prediction, estimation and variable selection.



7.8 The adaptive Lasso and thresholding: invoking sparse eigenvalues 215

At the zoomed-in level, the adaptive and thresholded Lasso also have very similar
bounds for the prediction error (compare (7.9) with (7.11)) in terms of the ¢’s and
A’s. A similar conclusion holds for their estimation error. We remark that our choice
of Conditions AA and BB for the tuning parameters is motivated by the fact that
according to our theory, these give the smallest prediction and estimation errors. It
then turns out that the “optimal” errors of the two methods match at a quite detailed
level. However, if we zoom-in even further and look at the definition of Apmax(+),
Omins and Qyarmin in Section 6.13.7, it will show up that the bounds for the adaptive
Lasso prediction and estimation error are (slightly) larger.

Regarding variable selection, at zoomed-out level the results are also comparable
(see (7.9) and (7.12)). Zooming-in on the the ¢’s and A’s, the adaptive Lasso may
have more false positives than the thresholded version.

A conclusion is that at the zoomed-in level, the adaptive Lasso has less favorable
bounds as the refitted thresholded Lasso. However, these are still only bounds, which
are based on focusing on a direct comparison between the two methods, and we may
have lost the finer properties of the adaptive Lasso. Indeed, the non-explicitness of
the adaptive Lasso makes its analysis a non-trivial task. The adaptive Lasso is a
quite popular practical method, and we certainly do not advocate that it should be
replaced by thresholding and refitting.

7.8.5 Bounds for the number of false negatives

The /,-error (1 < g < o0) has immediate consequences for the number of false neg-
atives: if for some estimator 3, some target $*, and some constant 5; PP one has

1B =B7llg < &7

then the number of undetected yet large coefficients cannot be very large, in the

sense that
upper

. A ¥ S,
(s Bi=0.1B;| > 8}1/r < 2.
In other words, £,-bounds imply the screening property for the large - in absolute
value - coefficients.
Therefore, on .7, for example

A 1
j: ﬁinit,':O, |::| S*Z'initOSuff(lﬁik)}‘ =0.
H ! 2. (6,5.,25.) | J

Similar bounds hold for the thresholded and the adaptive Lasso (considering now,
in terms of the ¢’s and A’s, somewhat larger |B7]).
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Typically, one thinks here of B° as target, although one may argue that one should
not aim at detecting variables that the oracle considers as irrelevant. In any case,
given an estimator 3 and alternative target §*, it is straightforward to bound || —
B°|l in terms of || B — B 4- apply the triangle inequality

1B —=Blg < 1IB—Blly + 118"~ Blly-

Moreover, for g = 2, one has the inequality

e =SB
1B* =Bl < Aéin(Zm(SO))

(recall that A2, (X 1(S)) is the smallest eigenvalue of the Gram matrix correspond-

ing to the variables in S). In other words, choosing B° as target instead of 8* does
in our approach not lead to an improvement in the bounds for || — 8||. See also

Problem 6.4 for related derivations.

7.8.6 Imposing beta-min conditions

Let us have a closer look at what conditions on the size of the coefficients can bring
us. We only discuss the adaptive Lasso (thresholding again giving similar results,
see also Zhou (2010)).

We define

1B |min == %gﬂﬁﬂ

1 —1
L)

be the harmonic mean of the squared coefficients.

Moreover, we let

i 1
|[3 |}213rm = (

S

Note that |B*|harm > |B*|min- In words: assuming that the non-zero coefficients are

all sufficiently large is more severe than assuming they are sufficiently large “on
average”.

Condition C For the adaptive Lasso, take Aagap sufficiently large, such that

‘ﬁ * |ha.rm = OSuff(ladap) .

Condition CC For the adaptive Lasso, take Aagap sufficiently large, but such that

Iﬁ* ‘harm =suff ladap-
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Lemma 7.4. Suppose that for some constant 83, on .7,
Bunic — B oo < 8PP,

Assume in addition that

|B” |min > 262PP<". (7.14)
Then under Condition C, on 7,
N 1 A’ada
o= S = | | oGz
adap ¢(;20mp(675*) |ﬁ |hdrm it
and | o
A * adap
dap — 1= O(AinieS+ ),
(Boe = 71 [q%mp(as*)} B © i)
and
B Bl = | 555 | O/
adap mm(6 S*,ZS*) |ﬁ |hd_1'm nit * )y
and

. A (52) } <’th )
Sadap \Sx| = [ 54V pe o o
P ( bgomp(as*) min(6:51:25) |\ B

1 }LZ 2
A[ i }0< init )
¢comp(6a S*) min (6 S* ) 23*) |ﬁ |harm

We show in Theorem 7.10 that the condition (7.14) on |3*|min can be relaxed (es-
sentially replacing |B™*|min by |B* |harm)-

It is clear that by Theorem 7.7, one may insert

_ VS« 1 -
600 B |:¢020mp(6as*) 8 m1n(6 S*,ZS*):| O(A'lmt\/a). (715)

This can be improved under coherence conditions on the Gram matrix. To simplify
the exposition, we will not discuss such improvements in detail (see Lounici (2008)).

Under Condition CC, the bound for the prediction error and estimation error is again
the smallest. We moreover have the following corollary for the number of false
positives.

Corollary 7.8. Assume the conditions of Lemma 7.4 and (say)
)Linit = 0(|B*|ha1m)a

then we have on 7,
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Ar%lax (S*)

o ¢czomp(6vs*)¢élin(6,s*,2S*)

O(sy).

Moreover, when (say)
A'init\/ S
———— = O(B" |harm),
¢c2omp (6’ S* ) o

one can remove the maximal sparse eigenvalues in the bound for |S\Si|: on 7,

¢(:20mp(6a S*)

Sadap\Si| = | 2T 7
‘ adap\ | |:¢[1in<6,S*72S*>

Jots..

By assuming that |B* |nam s sufficiently large, that is,

1
¢C0mp(67S*) r%lin(6v S*,Zs*)

:|A'inils* = Osuff(‘ﬁ*‘harm)7 (7.16)

one can bring \SAadap\S0| down to zero, i.e., no false positives (compare with Corol-
lary 7.9).

Thus, even if the design is strongly ill-posed with the ¢’s very small, the adaptive
Lasso behaves well in terms of false positives and prediction error if the regression
coefficients are sufficiently large (measured in terms of |B*|pam). The assumption
(7.16) corresponds to the bound (7.3) coming from the weighted irrepresentable
condition: we need a separation of order /s, between the weights inside the ac-
tive set and outside the active set. Indeed, modulo the ¢’s, outside the active set
the weights may be of order 1/(Ainity/5%) (see (7.15)), whereas assumption (7.16)
roughly says that the weights inside the active set are of order 1/(Ajpss). In this
sense, the results are sharp. See also Section 7.5.9 for a further discussion of “ideal”
weights.

7.9 The adaptive Lasso without invoking sparse eigenvalues

In this section, we refrain from using sparse eigenvalues. As a result, we have less
control of the prediction error of the thresholded or adaptive Lasso. In practice,
the tuning parameters are generally chosen by cross validation. With this in mind,
we again discuss choices of A4, Which optimize bounds for the prediction error
(without having very explicit bounds for this prediction error): see Condition EE.
Thus, our choice of the tuning parameter A,y is in the spirit of Condition BB and
CC, but now without assuming sparse eigenvalues.

Our results depend on the variant of the minimal adaptive restricted eigenvalue

¢* = ¢varmin(6ys*,zs*)
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which we generally think of as being not too small, i.e., 1/¢. = O(1). More-
over, to simplify the expressions, we do not distinguish between @comp(6,S) and
Ovarmin (6,54, 25,) (i.e., we take the smaller value @, := Pyarmin(6,Sx,25,)). We also
keep throughout the assumption || f* — 02 = O(A2. 5. /02).

init

7.9.1 The condition on the tuning parameter

We define for 6 > 0, the set of thresholded coefficients
S0 :={j:IB;|> 8}

We let |3*|2. . be the trimmed harmonic mean

*2 o 1 1 B
|ﬁ ‘trim T ; Z |ﬁﬁ-ﬂ|2 s
BT HES )

where 87P" > 0 is to be specified (see Theorem 7.10 below). Recall that fy is de-
fined as the projection (in L(Q,)) of f° on the linear space spanned by {yj}jes.

Condition EE Assume the following condition on the tuning parameter:

? 1n1ts* (p* ‘B ‘trlm
adap S45upper —fo + ¢ a{z . (717)

init

7.9.2 The results

In the next theorem, result 3) contains the main ingredients of the present section.
Results 1) and 2) are recaptures, they were presented in Section 6.2.3 and Section
6.8, and also summarized in Section 7.7.

Theorem 7.10. Suppose that ||yj||, < 1 forall j=1,...,p. Let

T = 1{2|(&,y))al < Ao}
Take Ainie > 2. Then on .7, the following statements hold.
1) There exists a bound 8"P" = O(Ainit\/5+/ ¢«) such that

1nit

||f1ml fO”n —= 511;111?51"
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2) For q € {1,2,00}, there exist bounds 8, satisfying

8PP = O(Ainits+/92), 3PP = O(Ainitn/5+/92), 8PP = O(Kinit/5+/02),

such that .
| Binic — B[lq < 6,77, g € {1,2,00}.

3) Let 8,""" and 82" be such bounds, satisfying 8" > 8" |\ /s, and 8,"" =
O(Aqmt\/a/d)*z)

Suppose that Aygap is chosen according to (7.17) in Condition EE. Then

2 2
R AZs Sy
||fadap_f0||3:0<Hf545lipper_f0 +1m;)’
* n ¢*

and -

N As s

|Sadap \S«| = O (m“*> .

001" [fim

Theorem 7.10 is a reformulation of part of Theorem 7.11 in Section 7.12, which
contains the proof for the noisy case. According to Theorem 7.10, the larger the
trimmed harmonic mean |f* \tzrim, the better the variable selection properties of the
adaptive Lasso are. A large value for 62" will make |3*|yim large, but on the other
hand can increase the bound for the prediction error || fugap — f°|12.

Corollary 7.9. Assume the conditions of Theorem 7.10. Note that
IB" |trim > 2077
This implies that when we take 5" =< Ainitr/5%/ 02, then
(Ainit/54) /97 = O(|B* isim)
and hence, with large probability,
|Sadap\ S| = O(s./92).

If in fact
(Kinics+) /03 = O(|B*[tsim) (7.18)

we get that with large probability
‘Sadap\s*| = 0(1)7

as in Corollary 7.8 of Subsection 7.8.6.

The bound we provide above for | fudap — f°||> may be subject to improvement. In
fact, we shall show that the threshold 6=""°" can be replaced by an “oracle” threshold
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which minimizes (for a given kddap) bounds for the prediction error (see (7.22)). The
choice of A,4,p We then advocate is the one which minimizes the prediction error
obtained with the oracle threshold. This refinement is more involved and therefore
postponed to Subsection 7.11.4 (for the noiseless case) and Section 7.12 (for the
noisy case).

Note that Theorem 7.10 allows for a large choice of 8x=""", larger than a tight bound

for || Binit — B*||~. However, with such a large choice, the choice (7.17) for the tun-
ing parameter is also much too large. Thus, a too large threshold will not reflect
in any way a choice for Auqqp yielding - given the procedure - an optimal pre-
diction error, or mimic a cross validation choice for ladap. We always may take
82" = O(Ainitr/5+/92). Under incoherence conditions, one may prove that one
can take 87" as small as 6""" = constant x Ay, where the constant depends on
the incoherence conditions (see Lounici (2008)).

7.10 Some concluding remarks

Estimating the support of the non-zero coefficients is a hard statistical problem.
The irrepresentable condition, which is essentially a necessary condition for exact
recovery of the non-zero coefficients by the one step Lasso, is much too restric-
tive in many cases. Our main focus is therefore on having O(s.) false positives
while achieving good prediction. This is inspired by the behavior of the “ideal”
lo-penalized estimator. As noted in Section 7.7, such a viewpoint describes the per-
formance of variable selection in settings where some of the regression coefficients
may be smaller than the detection limit.

When using cross validation, the best one can expect is a choice of the tuning pa-
rameters that reflects the optimal prediction error of the procedure. We have exam-
ined thresholding with least squares refitting and the adaptive Lasso, optimizing the
bounds on the prediction error for choosing the tuning parameters. According to
our theory (and for simplicity not exploiting the fact that the adaptive Lasso mimics
thresholding and refitting using an “oracle” threshold), the two methods are compa-
rable.

The adaptive Lasso with cross validation does fitting and variable selection in one
single standard algorithm. It follows from Section 2.12 that the solution path for all
Aadap can be derived with O(n|Sini| min(n, |Sini|)) essential operation counts. The
tuning parameter Auq,p is then chosen based on the performance in the validation
sets. Cross validation for thresholding and refitting amounts to removing, for each
k, the k smallest estimated initial coefficients | Binit, j |, and evaluating the least squares
solution based on the remaining variables on the validation sets. Therefore, the two
methods are also computationally comparable.
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7.11 Technical complements for the noiseless case without sparse
eigenvalues

We return to the noiseless setting as considered in Section 7.5. Our purpose here is to
provide the arguments for the results, presented in Subsection 7.9.2, for the adaptive
Lasso, without assuming sparse eigenvalues. The section can be considered as a
proofs section and can be safely skipped.

Recall that fs := argmin y— fig llfps — £2|| is the projection of £ on the |S|-dimensional
linear space spanned by the variables {y;} jcs. The coefficients of f are denoted by
bS,ie.,

fg = Z l[/jbf = be-
JES

We fix the set S, as

32219
S, := argmin? ||fs— 2+"‘“}, 7.19

where the constants are now from Lemma 7.6. We call f* := fg, the oracle, and S,
the oracle active set with cardinality s, := |S,/|, and we let B* := b5+,

For simplicity, we assume throughout that

£ = £O117 = O(Adis: /92),

where
¢* = ¢varmin(27 S, 25*)-

Define

init = || finit — £ |-
For g > 1, we define

0q = || Binit — Bl 4-

To avoid too many details, we use here the restricted eigenvalue @yarmin(2,Sx,25,)
instead of @2, (2,S.).

7.11.1 Prediction error for the noiseless (weighted) Lasso

Let L > 0 be some constant.

Lemma 7.5. For all S satisfying |ws||2/wi™ < L+\/|S|, and all B, we have
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weight — init Aweight Wi|Pweight, j
I, LI + Ainit Aoy [Bueight, |

igs

2 92
init;{’weight

012
<2[|fps =Sl +m

[Iwsll2,

and
Afinit;l'weight”WSHZH (ﬁweight)S - BSHZ + Afinitafweight Z Wj|ﬁweight,j‘
¢S
222 "
S 1 e T A TS
s 2..(2L,S,[S])

A guided proof is given in Problem 7.10. (Recall that for N = |S|, it holds that
¢min(2L7S7N) = ¢adap(2L7Sa ‘N|))

Lemma 7.6. Let

= = I+ ‘““

We have
6A2. s,
1n1t+2'mllll(ﬁ1n1t S”Hl <2||f fOHZ m §262

Moreover

* 2 3)Linits* 2

8 <3| = 217 Ainie + e <387/ Ainits
i (2,84, 54)

and

62 S 65*2/()Lm11\/§)

This result follows from Lemma 7.5, and Lemma 6.9. We present some hints in
Problem 7.11. (For the prediction and ¢;-error, the minimal restricted eigenvalue
may in fact be replaced by the compatibility constant.)

We thus conclude that
61%11t ( 1n1ts*/¢*)
and
81 = O(inits:/97); & = O(Ainit\/54/ 7).

But then also

8 = 0(8&) = O(Ainit\/5+/92).
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7.11.2 The number of false positives of the noiseless (weighted)
Lasso

The KKT conditions can be invoked to derive the next lemma. Set
) 1
1(1/w)sllz =) —-

jes Vi

Lemma 7.7. Suppose ||y;|| < 1 forall j=1,...,p. We have

2
| fweignt — £O11% 11/ )5, gns. 12
7 22

init

|Sweight\S>k | S 4

weight

| fweight = Ol 1CL/W)s, g5 12

A2A
e lwei ght Afinit

Proof of Lemma 7.7. By the weighted KKT conditions (see Subsection 7.5.2), for
all j
2(Wj7fweight - fo) = _z'initlweightwjfweight,j-
Hence,
Y, AW fueigne = P 2 AniASeignt WS s. |13

.feSweighl\S*
> Ainichweight[Sweight \S+ 2/ | (1/W) s, san\s.
On the other hand

Y (W fueiah = £O) P < Ay (1,1 (Sweight \S:) [ fueighe — /1.

jechight\s*

2
2-

Clearly,
AIZHEIX (21,1 (Sweight\S*)) < Ariax A |Sweight\S*|~

Application of this result to the initial Lasso gives:

Corollary 7.10. Suppose that ||y;|| < 1 forall j=1,...,p. It holds that

2 5'2't
|Sinit\S*| < 4Amax 2{1;1 .

init
Hence, the initial estimator has number of false positives

|Sinit\S* ‘ = Ar%laxo(s*/q)f)



7.11 Technical complements for the noiseless case without sparse eigenvalues 225

This result is the noiseless version of Lemma 7.2. Recall that the eigenvalue A2,
can be quite large; it can even be almost as large as p (see Example 7.4 below).
Therefore, from the result of Corollary 7.10 one generally cannot deduce good vari-
able selection properties of the initial Lasso.

In the next example, Example 7.4, X satisfies the compatibility condition, but
25(S) has largest eigenvalue of order p — s...

Example 7.4. Suppose that
I=(1-p)l+p(bb"),

where 0 < p < 1 and where b= (1,1,...,1)”. Then X has smallest eigenvalue 1 — p,
so that we can take ¢2 > (1 — p) (see also Problem 6.14). Problem 7.1 verifies that

Aax (Z22(8:)) > (1=p) +p(p —52).

Problem 7.7 examines the situation further.

7.11.3 Thresholding the noiseless initial estimator

The adaptive Lasso inherits some of its properties from the initial Lasso. In addition,
we derive theory for the adaptive Lasso via the thresholded and refitted initial Lasso.
Let for 6 > 0,

mlt {] ‘ﬁinit,j| > 6}7

and

5 .
finit . fﬁm“ 55 Z lI/]ﬁlmt]

init S
ES init

Recall that fg is defined as the projection of f* on the linear space spanned by
{y;}jes. Thus fom is the refitted estimator after thresholding at &, whereas f2. is
using the thresholded coefficients without refitting.

The following lemma presents a bound for the prediction error of the thresholded

and refitted initial estimator. We stress that under sparse eigenvalue conditions, the
result of this lemma can be improved.

Lemma 7.8. We have
tg — 1 <131l

and moreover,
Ifgs — 21l < lIfgs-a. — £l
it *
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<1 = 11+ A (B4 (S\SB ) /1882 ((5 + 6.).

Proof of Lemma 7.8. The first inequality is trivial, as the refitted version is the
projection of f° on the space spanned by the variables in Sglit, and fiiit is in this
space.

For the second result, we note that if |Biyi j| < 0, then | [5]*| < 0 + Ow.. In other words

8+ 00 S
§oHo% 80
Hence
It — 7O < Ifggra — £l
Moreover,
1= i) s, P = (B o) TEB; | s
S+ 00 *
< A2 (SAST)IBY i3
< A (Z11(S\S275))[S,\820= (5 + 8.)%.
But then

Ifggsa. =17l = | min 1fg |

= Sf+6m

<Wiggoa. =L NS =PI = S0 5|

<1 = 1Ol A (B4 (S\ST3)) 1/ 18.\S2 (5 + 6.).

O

We know that ||£* — f°|| = O(Ainity/5+/9x) and 8. = O(Ainity/5x/92). Therefore,
Lemma 7.8 with § = 38. (which is the value that will be used in Corollary 7.11
ahead), gives

g — £l < g — ]
= O()qnlt\/i/(p*) +4Amax(21,1(s*\sjsw)) \/ |S*\Sism|6m
= O(Ainit/5+/ 0«) (1 +Amax(21,1 (S*\Siﬁm)) |S*\S:&m |/¢*> . (7.20)

When |B*|min is larger than 40., we obviously have S*\Si&“ = (. In that case, the
prediction error after thresholding at 36, is still of the same order as the oracle
bound. Without this beta-min condition the situation is less clear. The prediction
error can then be worse than the oracle bound, and Lemma 7.8 does not tell us
whether it improves by taking the threshold § small, say & /,/sx < 6 < . (With
the lower bound for & being inspired by the comment following Lemma 7.9).
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The number of false positives of the thresholded initial Lasso is examined in the
next lemma.

Lemma 7.9. The thresholded initial estimator has number of false positives

52
|Si(?1it\S*| <

p)
y .
Proof of Lemma 7.9. We clearly have
885 \S < Y B < 1B — B3 < 83
jes . \S.
Whence the result. O
If we take 0 > 8,/./s5, we get from Lemma 7.9 that

1S \Ss| < 5., 7.21)

init
i.e., then we have at most s, false positives after thresholding.

Clearly, the larger the threshold & the smaller the number of false positives. On the

other hand, a large & may result in a bad prediction error. According to Lemma 7.8,

the prediction error [|fes — £9|? can be quite large for § much larger than 8... With
mit

0 in the range 0,/./55 < 0 < 36., the prediction error is perhaps not very sensitive
to the exact value of 8. Looking ahead to the case with noise, cross validation should
moreover prefer a larger threshold due to the additional estimation error that occurs
if one keeps too many coefficients.

7.11.4 The noiseless adaptive Lasso

The adaptive Lasso has weights

wj = l/usinit,j'u ]: 17”'»]7'
Write

fadap ::fﬁadup’ Sadap = {] Badap,j 7& O}; 6adap = Hfadap _fOH

Observe that the adaptive Lasso is somewhat more reluctant than thresholding and
refitting: the latter ruthlessly disregards all coefficients with |Binic j| < 6 (i.e., these
coefficients get penalty o), and puts zero penalty on coefficients with |Bini ;| >
0. The adaptive Lasso gives the coefficients with |Bini j| < 0 a penalty of at least
Ainit(Aadap/6) and those with |Bini¢ | > 0 a penalty of at most Aipii(Aadap/0)-
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Lemma 7.10. We have, for all 6 > 8,/./s,

Padap,
6adap + linitafadap Z ‘ e j|

Je(SB)e | Binit,
1
2
< 2||f5it?1il _f H (let adap Z B :
* jES‘S init, j

Proof of Lemma 7.10. This follows from applying Lemma 7.5, with L = 1. We only
have to show that

‘Pmin(z Sgntv ‘Slnlt ) > ‘])*

Because (see (7.21)),
)
|Sinie \Ss| < 5,

indeed
(Pmin (2 Sl(?llt’ |S1n11 ) Z (PIIIIH (2 Sl(?’llt U S*7 |S11’11t U S* |)

> ¢varmin(23S*7zs*) = 0.
O

The above lemma is an obstructed oracle inequality, where the oracle is restricted
to choose the index set as the set of variables that are left over after removing the
smallest |Binic,j|. If Aadap is chosen small enough, one sees that the prediction er-
ror |\ng T £Y|? of the refitted thresholded initial estimator is not overruled by the

penalty term on the right hand side. This means that the prediction error of the adap-
tive Lasso is not of larger order than the prediction error of the refitted thresholded
initial Lasso. Note that we may take A,qap > &, because for Auqap < 6, the penalty
term in the bound of Lemma 7.10 is not larger than 6).§ms* /92 (see also Lemma
7.11), which - in order of magnitude - is the oracle bound (which cannot be im-
proved).

Lemma 7.10 leads to defining the “oracle” threshold as
322

2 e : _£0 2 init
5oracle = arg62gl/r\l/§ H 1énn S ” (P*

1

adap (7. 22)

jESE Blmt,]

init

This oracle has active set Slr‘l’lrt‘icle with size |S1r‘l’lrt‘“1°| = O(s«). In what follows how-
ever, we will mainly choose 6 = 38.. Thus, our bounds are good when the oracle
threshold Soracle is not too different from 36... If in the range 0,/./5x < 8 < 30.

the prediction error [[f;s — f°|| is roughly constant in &, the oracle threshold will
1nit
at least be not much smaller than 38... When the oracle threshold is larger than this,

it is straightforward to reformulate the situation. We have omitted this to avoid too
many cases.
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Some further results for the prediction error 8,4qp follow by inserting bounds for the
initial Lasso.

We now define the (squared) trimmed harmonic mean

*|2 1 1 !
1B lsim = ( )3 W) : (7.23)
J

5 |Br>26.
Lemma 7.11. It holds that
1
Y {j: 6 —0e <[B}] <
ﬁlmt,]

)655

+ 4525‘* |ﬁ |tr1m }

Moreover, for 6 > 8,/./sx,

1 - 25,
Lp <%
]Esinit IIII[,]

Proof of Lemma 7.11. We use that if |Bini,j| > 6, then |87 > & — 6. Moreover, if
B}| > 20, then |Binic ;| > [B;]/2. Hence,

1 1 1
)y Bz )y gz B2
jesd. Pinitj |Bjini|>6. [B7<28. Pinitj |Binij>8, |B}1>26 Pinit.j
1 , . ) 1
<5 {j: -0 <|Bj| <28.}|+40

|2
1B >26.. 1B} 1
The second result follows from

1

Z = 52 |Sm1t

icgd 1n1t
J €Sinit J

and, invoking (7.21),
)
|Sln1t| < ‘S \S |+ |S | < 2s*

init

Corollary 7.11. With the special choice 6 = 38.., we get

)y

jESw"" 1n1t,J

nit

1

Sk

Corollary 7.12. Using the bound of Lemma 7.11 in Lemma 7.10 gives that for all

5> 8/ /5,
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52

012
adap <2||f55. -f ”

6)“5111 adap { ’ {:
o7 62
If 8,/+/5% < 38, we may choose 8 = 36. to find

+

+48%5,|B* |mm}

2422 L
Ll ladap sl B - (7.24)

52
97

0 2
adap — < z‘lfsﬁn(?:o —f H

According to Lemma 7.8,

Ifga. = 21l < lfgss = £

= Ouny/5/00) (14 Am(E11 5.5/ I3\ 3. ).

Inserting these yields

2422 _
adap > ZHfS‘*&e fOHz ¢ ol adap ‘ﬁ*|tri%n
*

o@;;t ) (1 +A§m<xl,1(s*\s;”w)ns*\s:‘ﬁw|5i)

242 L
+ ¢mlt)1'adap *|ﬁ |Lri%n‘ (7.25)

We proceed by considering the number of false positives of the adaptive Lasso.

Lemma 7.12. Suppose that |\y;|| < 1 forall j=1,...,p. We have

5adap 62 A2A 5adap 62
A’azdap 2’1%11t " A”‘I‘d’ip Ainit

‘Sadap\S*l S 4

5adap 51
Aﬂdap )Linit .

A2

Proof of Lemma 7.12. This is a special case of Lemma 7.7, where we use the
inequality

2
‘Sadap\S*lz = ( Z Badap,j|1|ﬁadap7j|)

jESadap\S*

< Z ‘ﬁadap,jrz Z |ﬁadap,]|2'

jesadap\s* jesadap\s*

Alternatively, one may apply



7.11 Technical complements for the noiseless case without sparse eigenvalues 231

|Sadap\S*| = Z |ﬁz:1dap7j|_2/3 ‘ﬁadap,j|2/3

JESadap\Sx

(% unt?) [ )

jesadap\s* jESadap\S*

Hence
Y Buaap i 7 > [Saaup\S- 787

J eSadap\s*
One then finds, by the same arguments as in Lemma 7.7,
46 dapAmaX( dddp\S*) 2 )Lgm/'L dap|dedP\S*| 51

This gives

S, 13}
| Sadap\ s, ‘ < o) Aadap 1

adap 2'inil '
O

We will choose ladap > 30. in such a way that that the prediction error and the
penalty term in (7.24) are balanced, so that

52 2
wop _ 0( S+ K > . (7.26)
)Ladap ¢* ‘ﬁ |tr1m

Let us put the consequences of this choice in a corollary, summarizing the main
results for the noiseless adaptive Lasso.

Corollary 7.13. We assume the normalization ||y;|| < 1 for all j and take the choice
for Aagap given by (7.26).

a) It then holds that
A2 52 7[1 s*
Sui 5.1 = O ZBE[B1,2 1A 20 51, ).
- When A'lilts*|ﬁ*|;1%n/¢*2 = 0(1)’ we get |Sadap\S*| = O(S*/(P*z)

- When also Amax = O(1), we get |Sagap \S«| = O(\/55/9+).
- With A2s?B*|2 /08 = O(1), we get |Saap\S:| = O(1) (or even

lﬂlt
|Sadap \S«| = O if the constants are small enough). This corresponds with the bound
of Corollary 7.5, equation (7.3), implying the weighted irrepresentable condition
defined in Subsection 7.5.1, a bound which, according to Example 7.3, cannot be

improved.

b) We know that 6. = O(8,) = O(X,mit\/ﬁ/(pf). Suppose now that this cannot be
improved, i.e., that
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8 = Dinie/5+/ 97

B ¢;
B ifnzo( )
" )Ll%lll Sx

Hence, when the convergence in sup-norm is slow, we can get relatively few false
positives, but possibly a not-so-good prediction error. When 8w > 8, /+/5x is small,
the bound

Then we get as above

1

‘B |tr1m = Z
S 1 |>az/f|5 B

may be appropriate. Assuming this to be O(¢? /(A2 s.)) amounts to assuming that

“on average”, the coefficients ﬁj* are “not too small”. For example, it is allowed
that O(1) coefficients are as small as A/ 2.

¢) Suppose now that
1B |min == Erelisnlﬁf\ > Dinit/5+/ 07
Then again
‘ﬁ* ‘g‘im 2 A1?11ts*/¢j'

With this (or larger) values for |B*|min, we also see that the refitted thresholded

estimator f33°° has prediction error O(82,) = O(A2,s./92). If

|B*|min > )Linits*/(])sy

we in fact only have O(1) false positives.

d) More generally, in view of Lemma 7.8, the prediction error of the adaptive Lasso
can be bounded by

02

(This can be improved under sparse eigenvalue conditions.)

;LZ
8y = ( )(1+A3m(21,1<s*\s;‘5w>>|s*\siéw|6£).

7.12 Technical complements for the noisy case without sparse
eigenvalues

This section provides the proof of Theorem 7.10.

Consider an n-dimensional vector of observations

Y=f"+e,
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and the weighted (noisy) Lasso
~ . 2 p
Bweight - argn;}m{ HY - fﬁ Hn + zdnit;lfweight Z Wj|ﬁj‘ } (727)
j=1

Here, f°, the dictionary {y;}, and /g := X w;B; are now considered as vectors in
R"™. The norm we use is the normalized Euclidean norm

LA = Ml = NLfll2/ /s f €RT,

induced by the inner product
~ 1 & . <
(F.Dwi= Y fifis TR
i=1

We define the projections fg, in the same way as in the previous section. The ¢-
sparse projection f* = fg- =Y jcg Y [3;-‘, is now defined with a larger constant (7
instead of 3) in front of the penalty term, and a larger constant (L = 6 instead of
L = 2) of the (minimal) adaptive restricted eigenvalue condition:

722.18|
S* := arg min fg— 2+$ .
gSCS(){”S fOHn l,%un(67S7|S|)

We also change the constant ¢, accordingly:
Oy = ¢Varmin(67S*a25*)-

Let .
fweight = waeight’ Sweight = {] : ﬁweight,j 7’é 0}

We define the estimators finit and fadap as in Section 7.6, with active sets S’init and
S'adap. The unpenalized least squares estimator using the variables in S is

fs = fjs 1= arg min ||Y—f[33||n~
=1

We define for 6 > 0,
$3i=1j: Bl > 8}, S2:=1{j: |B;| > &}

The refitted version after thresholding, based on the data Y, is %53 .

init
We let . .
6init = ||finit _follna 6adap = ||fadap _f()”m

and moreover, for g > 1,
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5q = || Binit — B*”q

To handle the (random) noise, we define the set

T = { max 2[(€,yj),| < 2{)}7

1<j<p
where Ag is chosen in such a way that
P(7)>1—«

where (1 — o) is the confidence we want to achieve (see Lemma 6.2 for a value of
Ao in the case of normally distributed errors).

The main point is now to take care that the tuning parameters are chosen in such
a way that the noisy part due to variables in S are overruled by the penalty term.
In our situation, this can be done by taking Aipit > 249, and A,gqp large enough. A
lower bound for )Ladap depends on the behavior of the initial estimator (see Corollary
7.15). In Corollary 7.11, we let Aqap depend on Ainig, 5 and ¢., on a bound 8.

for 300, on the prediction error of f aauPrer and on the trimmed harmonic mean of the
|B; | defined in (7.23).

After presenting a result for the least squares estimator using only the variables
J with large enough | Binit, |, we give the noisy versions of Lemma 7.7 (the proof
is a straightforward adjustment of the noiseless case, see Problem 7.10). We then
present the corollaries for the noisy initial and noisy adaptive Lasso, as regards
prediction error and variable selection. These corollaries have “random” quantities
in the bounds. We end with a corollary containing the main result for the noisy
case, where the random bounds are replaced by fixed ones, and where we moreover
choose a more specific lower bound for A,qap.

The least squares estimator fsﬁil using only variables in .SA'i‘?lit (i.e., the projection

of Y = Y+ ¢ on the linear space spanned by {1,1(,-}i€§§ ) has similar prediction
s init

properties as f¢s  (the projection of f° on the same linear space). This is because,
init
as is shown in the next lemma, their difference is small.

Lemma 7.13. Suppose we are on . Let § > 82/@ Then

~

f

27L§s*
s .
Sinit

97

—fe |7 <
Si(?qit” -

Proof of Lemma 7.13. This follows from

~ 2 N
Hf,§§ - fﬁm”ngz(£7f§15 —1go )n,

init nit init

and
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2(8,f§5 — S§ ) < AOHbSmII — 1mt||1
nit

< /25 o[BS — b5

284

fﬁﬁﬂ{”ﬂ/‘f’*

O

Lemma 7.14. Suppose we are on 7. Assume Ainiy > 240 and lweightwggn > 1. We
have

waelgm PRI/ W)s, s 13

‘SAweight\S*| S 16

2
welght )‘mlt
”fweight_fOHn H( / ) welght\S*”z

NAA,
e afweight a'1n1t

The proof is Problem 7.8.

Finally*, we present two corollaries, one recalling the prediction error of the initial
Lasso and describing a variable selection result, the other one regarding the predic-
tion error and variable selection of the adaptive Lasso. The consequences of these
two corollaries, presented in Theorem 7.11, give qualitatively the same conclusion
as in the noiseless case.

Corollary 7.14. Let

nit S
T
mm mlrl(6 Sk, 254)
Take Ainic > 2 Anoise- We have on 7,
61%\“ < 261’%111’1

Moreover, on 7,

01 < 58min/ Ainits

and .
8 < 1082,/ (Aanto/57).
Also, on 7, and assuming ||W;||, < 1 for all j,
32
‘Slmt\S | < 16Amax ;ﬁm'

it

4 Of separate interest is a direct comparison of the noisy initial Lasso with the noisy £y-penalized
estimator. Replacing f by Y in Lemma 7.6 gives

' ey s
Y — finiel2 < 2min Yffv2+$
1Y — el < 2min {05+ S
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Corollary 7.15. Suppose we are on 7. Take Ainiy > 249 and & > 82/\/5 Let

> 188

init "
,gsi 1n1t J

The prediction error of the adaptive Lasso then follows from applying Lemma 6.12.
We obtain

1 |Badap, |
dedp + E)Linitladap Z | 3 ] J‘
jgsﬁm init, j
1422 1
0 2
§2||f§i<sm_f Hn (let adap YR
* ]ESI‘?“I init, j
If moreover || Wi, <1 forall j and
lada\p > ||(Binit)S§; ||°°7
then
Sy 83 Sutap &
‘Sadap\S*| < 16):12 = 122 A4 Amax )Ld B .
adap ““init adap )Linit

The randomness in the bounds for the adaptive Lasso can be easily handled invoking
fixed bounds 5; PPEE > 8, and SuPP™" > 0., that are assumed to hold on .7. We recall

the notation .

1 1
* (2 .
|ﬁ ‘trim Eani

S ‘ﬁ»fl>25°lipper |I-))]*‘2
J
The special case § = 387" then gives

Theorem 7.11. Let 82 := || f* — fO|2 + 742, 5./ 2. Let

Supper . _ 106*2 )
2 A’init\/g

Suppose we are on 7, and that ||yjl|, < 1 for all j. Suppose 5. < BEPPT \uhere

3PP > 8PP/ /55 Let Ainie > 2Anoise and Augap > 387", Then

2 5622 A2

% <2H ]
adap S4 " ¢* |ﬁ |trim
The choice 2
2 9(Hf e O P )¢* B .
o st . 02 ) AAls.

indeed has
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Adtap > S2IB [fim > (384702,

With this choice, we find

5adap <128 { H sglpper — f0 + )lets*(p* } )
n
Clnd ( )22{2 A'1
R 32M 32M /54 Ainit
Sadan\Si| < 7m“s NAmax—=5 77—
|Sadap \Sx| 05|B* |mm 03 B* |uim
where 2
Mo 105mm¢* '
A’l%ll[

The situation is simplified if we assume that the minimal coefficient
* . *
in = min |B;
B on = min ;|
is sufficiently large. For example, under the beta-min condition
B [min > 482PP",

thresholding at 48.""°" will not increase the prediction error. The bound of Theorem

7.10 then coincides with the bound for 51mt, namely

5adap ( i%ms*/qb*z)'

The number of false positives is again O(s,/@?2). If |B*|min is even larger, the pre-
diction error remains of the same order, but the number of false positives decreases,
and may even vanish.

7.13 Selection with concave penalties

Consider now the /,-“norm”

» 1/r
1Bl = (Z |ﬁj|r> :

=1

where 0 < r < 1. The estimator with /,-penalty, is

Bargmm{ Y (Y- fy(X ﬂ-wn:}.
i=1
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Again, A is a (properly chosen) regularization parameter. We let f := fﬁ'
We first recall the result of Lemma 6.15 for the prediction error.

Definition We say that the ¢,-compatibility condition is satisfied for the set S, with
constant ¢, (L,S) > 0, if for all B € RP, that satisfy ||Bsc||; < L||Bsl|}, it holds that

1Bs |12 < |1 £51151S177" /97 (L,S). (7.28)

In Section 6.11.1, we used the notation
¢2”7r(S) =0, (3,9),

i.e., we took L = 3 and explicitly expressed the dependence on the Gram matrix X.
The latter was to incorporate possible approximations of X. This can be done in the
present context as well. We omit the details.

Let .7, be the set

2(&, fg)n
Iy = sup%ﬁ% :

B 27) 2
7l 18I
In Corollary 14.7, it is shown that, under general conditions, .7, has large probabil-

ity, for Ay of order \/log p/n.

Recall the projection fs = fis, in Ly(Q,), of £° on the linear space spanned by
(W)} jes:
fg :=arg min || f — £ ..
I=Ipg

Definition of the oracle We define the oracle as B* := bS+, with
2
5. = are iy {4l — 23 + 1202 ISP /077 (3.5) ]
% o’
and set f* := fg+, |Si| := s« and ¢x := @y, (Ss).

To simplify the exposition, we assume the “estimation error’ is the dominating term,
i.e., that

2.2
aflpe— o+ O [ | }owm.

27 (S4) 27 (S)

Let us restate Lemma 6.15 for the prediction error.

Lemma 7.15. Suppose A>~" > 51024414. We then have on 7,
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1= P12 227 — B7llr = [1} 0(7s.).
677 (s.)

For variable selection, we again invoke the KKT conditions. (Due the concavity of
the penalty, the KKT conditions do not characterize the solution).

KKT conditions We have for all ﬁ ;i # 0,

2(E(B—B)j—2(e,y)n = —rAZ B4

Here . .
T{B; # 0} = sign(B;).
We will apply the following auxiliary result.

Lemma 7.16. For any index set S and vector B with nonzero coefficients in S, and
forall g > 1, we have

_ 1
Z ‘Bj|72(17r) > |S“/%l (Z ﬁj|2(1r)(q1)> q—1 .

JES JES

Proof. This follows from

2(1=r)(g=1) _2(1=r)(g=1)
Sl=X 1B« 1Bl 7
jESs
g1 1
Ca(1—r q 21—V (g— q
<(xls=) " (L)
jes jes
where we applied Holder’s inequality. O

We now invoke similar arguments as in Lemma 7.7. The definition of the maximal

sparse eigenvalue A2, (N) can be found in Subsection 6.13.7.

Lemma 7.17. Suppose || ;|| <1forall j=1,...,p. Take & > (577477 1/(2r)) Ag.
We have on 7,

$16. = [zl Tog [ L] o (),

Thus, under sparse eigenvalue conditions, the concave penalty is capable of select-
ing the right order of magnitude of variables. If the sparse eigenvalues are very
large, we see that the /,-penalty may still select too many variables, but the number
of false positives gets close to O(s.) as r — 0.
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Proof of Lemma 7.17. Throughout, we assume we are on .7,. On .7, it holds for
all j that 2|(&, y;)| < Ag (since y; = fg, with By =1{k = j}, k=1,..., p). Consider
the set of estimated coefficients $9 after thresholding at 6 := A. In view of Lemma

. 2
7.15, it holds that ||Bsc ||7 = O(A"s.) /97", and hence

05 bt
[S°\S| = O(s.)/ 9"
By the weighted KKT conditions for the £,-penalty, when j € ($\S%)\S.,

20(wj, f = £l < 227 1By 1700 2,

where we use that A2~ /87" = rA > 2A,.

Hence,

) L (7 S A M St D DR /e

JEB\SE)N\S, JEB\SEN\S,
L
_ - (s\sﬁ)\swl( y |ﬁ,-2<“><q”) o
jeS\Ss

where we used Lemma 7.16. On the other hand

Y 1 = 0l < AR (S\SONSIIF = £01l5-

JEB\S\S.

It follows that

(S\SONS.|7T < 16r 2472 Cl\ﬁsfllz q ylIlF=71R
1Bse 1560 UN 7 1= £
_ —2 V n
= 16r “Cs, ( FEEGIrEe > Ty q
where o o5
_ A (Z11((8\S N\S:))
[(S\S®)\S.|
Hence,
|($\S2)\S. |

1Bse 550N /17 = 011
—1..-2(g—1 r q
<1697 )<CS*) ( 22(-1(g-1)g )( 225, >

We now choose ¢ — 1 = r/(2(1 —r)), which gives

o &6 TS 7 (|Bse 12\ (1 = 02\ 70D
[(S\SP)\S,| < 1620-7, T >(cS*> o ;Lzs* i
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By Lemma 7.15,

st = |~ [o7so. 17~ 11 = | = oas.).
0. ¢
Moreover, if |($\$%)\S.| > s., we know that
Cs, <2A2,,(5:).
Thus, then .
6808 = |22 o,

We also know that C <1, so

o | gt
BnSNS.I= | |0t 7).

Finally note that

Problems

7.1. Let
Zi= (1= p)l+p(bbT),

where 0 < p < land b= (1,...,1)". Take

B=b/vp
Then clearly || 3]]2 = 1. Check that

BTEB = (1-p)+pp.

7.2. Here is an example where the compatibility condition holds for all L and S with
Ocomp(L,S) > 1/2, the irrepresentable condition does not hold for some Sy with
so := |So| > 16, and the maximal eigenvalue A2, of I is at least §(p —so). The
exercise consists in proving Lemmas 7.18, 7.19 and 7.20.

Let So ={1,...,s0} be the active set, and suppose that

21 Zin
Y= ’ ),
<22,1 22,2)
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where Xy ; :=1 is the (5o X sp)-identity matrix, and
5.1 :=p(bab]),

with 0 < p < 1, and with b; an so-vector and by a (p — so)-vector, satisfying ||b1]|2 =
|22 = 1. Moreover, X5 5 is some (p —so) X (p — so)-matrix, with diag(X,,) =1,

and with largest eigenvalue A2, (X5 ,) and smallest eigenvalue A2 (£25).

Lemma 7.18. Suppose that p < Aéﬁn

est eigenvalue A2, > A2. (£5) —p.

min min

(222). Then X is positive definite, with small-

It follows that the compatibility condition holds for any L and S, with (i)czomp (L,S) =
Arin(Z22) = p.

Next, we illustrate that for a particular choice of b and b,, and for p > 1/ /S0, the
irrepresentable condition does not hold.

Lemma 7.19. Let by := (1,1,...,1)7 /\/s0 and b := (1,0,...,0)T. Then for ts, :=
(1,...,1D)T, we have
122,121 T, [leo = P/50-

We now give an example where A2, (X27) is huge, but A2, (X,5) is harmless. We
take for some 0 < 6 < 1,

5= (1—0)[+0cxc, (7.29)
where ¢; := (1,...,1)T.
Lemma 7.20. With X, » given in (7.29), one has
Agin(222) = (1-6),

and
AéaX(ZZ,Z) = (1 - 6) + 6(17—50)'

Corollary 7.16. Let

1 0 0 p/v/so 0 - 0
0 1 0 p/vso 0 -+ 0
0 0 0 :
¥ 0 0 1 p//so 0 -+ 0 ’
p/vso p/v/so o p/y/so 1 6 - B
0 () () 9 1 9
0 0 0 0 0 1
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where p = 0 = 1/4. Then the compatibility condition holds for all L and S with
Ocomp(L,S) > 1/2, the irrepresentable condition does not hold for sy > 16, and the
maximal eigenvalue A2, of X is at least $(p—so).

7.3. Consider Example 7.3. Check that

_ 1 (p2s0 — 1)1 — p°15, 7, prs0>
AN = o .
He = ( " oo
Hence
sup 2111(</V)<TTS° > =1+1/(p%s0—1).
’ so+1 S

1T T <1

This can be large, e.g., when p? = 1/so+1/ s% (recall that the irrepresentable con-
dition does not hold for p > 1/,/s0). By Theorem 7.1, we conclude ||Bini; — Bl
can be large, which is of course completely due to the (so -+ 1)-th variable.

7.4. In this example, we investigate the effect of adding a variable to the active set
on the irrepresentable condition. Consider So = {1,...,s0} and .4 := SoU{so+ 1}.
Write X | := Xy 1(Sp). Then

Zi(A)= (Zlfl a)-

a 1
Verify by straightforward calculations

_ B —Ba _
sl =iy T2 0-as

where
B:=(1 —aTzljlla)Zfll +E[11aaT2Ef =(Z1, *aaT)_l(l faTZI_)lla).
7.5. In this exercise, we investigate the irrepresentable condition in the noisy setup.

Let
Y=XB"+e.

The active setis So = {j : [3}0 # 0} and the Lasso is
p= argmﬁin{llY—XﬁH%/nﬂLlllﬁlh}-

Define )
T = { max 2|e"X)|/n < X}.
1<j<p

LetS:={;: B ; # 0}. Show that the KKT conditions yield that on .7, for j € $\So,
and A > Ao,
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2E(B-B));= (2~ 2)T;,

where |%;| < 1. Here £ := X" X/n. Show that the irrepresentable condition

. . A—Xo
sup [ £2.1(S0)Z1 1 (S0) Tyl <

L% (7.30)
g5, <1 ’ A+

implies that S C Sy on .7, by arguing along the lines of the proof of Theorem 7.1.

7.6. We study the replacement of the Gram matrix £ in the irrepresentable condition
by some approximation X. Consider the situation of Problem 7.5. Suppose that for
some set Jx and some Ay, one has on the set .7 N .Y that

||2 —ZHwHBinit —ﬁ0||1 <Ix.

Show that the condition

_ Ainit — (Ao + Ax)
su 20 1(S0)E 1 (S0) Ts ) |[oo < ot 2 T A/
H‘FSOHESIH 2.1(80) 2 1 (So) s, )l T (o )

suffices for the initial Lasso to have no false positives on .7 N .
To appreciate this result, we remark the following. As we have seen (Theorem 7.7),
on 7, and with A;y; > 240, we have

”ﬁinit _ﬁ*Hl - O(A'inits*)/‘l’czomp(?’vs*)

(where ¢z, (3,Sx) = czomp 5(3,5.): see Section 6.12 for conditions for the replace-

ment by @comp,x(3,S5%)). Suppose now that the approximation error ||* — 9|1 is
also of this order (see also Problem 6.4). Then the X-irrepresentable condition has
slightly larger noise term Ay + Ax (instead of Ap), but the additional Ax is of order
Mnitlx/(j)czomp(&S*), where Ay = ||£ — X||lw. So we can use the Z-irrepresentable

condition when the sparsity s, is of order s, = Ogusr(Ay 1¢30mp(3,s*)).

7.7. This exercise (van de Geer et al., 2010) illustrates that the Lasso can select
too many false positives, showing that the bound of Lemma 7.2 is sharp. We con-
sider, as in Problem 7.1, the case of equal correlation in an idealized setting. Let
P be a probability measure on 2" x R with marginal distribution Q on 2". We
study a function Y € L, (P) satisfying Y = f°+ ¢, where f0 = ):?:1 By, and where
Vi,..., ¥, are given functions in L (Q). The Gram matrix is £ := [ y7 ydQ, where
V= (Vi,...,¥,). The Lr(P) inner product is denoted by (-,-), and || - || is the
L,(P)-norm. We let

A . p
B = argrnﬁm{nY— Y wjﬁjzmmnﬁnl}.
=1
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To make our analysis more explicit, we throughout take Ajni; = 249, where Ay >

2max;<j<p (€, yj)l-
Let b be a p-vector of all 1’s, and let

= (1—p)l+pbb”,

where 0 < p < 1.
(a) Show that for any set S with cardinality s

A2 (Z11(S) =1—p+ps.

Thus, in this example, the maximal eigenvalue A2, is equal to 1 —p +pp > pp,
i.e., it can be vary large.

(b) Verify moreover for any L (and for s and p even),
¢3armin(L7S7 25) = ¢2(L757 ZS) = Ar%]in(zl,l(s)) =1-p.

Assume that
A Pso iAo
1—P+P50 Ainit"'/’LO
(compare with (7.30)), and

>0

2 1
<p< 3.
2s0+1 2
Also assume that %
- JE€So
2(e,y;) = . .
cw={ 3 I8

The latter can be seen as the “worst case” correlation pattern. Some other and per-
haps more typical correlation patterns (that increase the penalty on the true positives
and decrease the penalty on the true negatives) will lead to similar conclusions but
more involved calculations.

We further simplify the situation by assuming that

B = Po, ¥ j € So.

where [y is some positive constant. It is not difficult to see that the Lasso is then
constant on Sp:

Bjinit = Bo, ¥V j € So,
where ﬁo is some non-negative constant. Moreover,
ﬁj,init = ?7 v] ¢ SO7

where § is some other constant.
(b) Show that when

Ainit + Ao P (P —50)A (Ainit + o)
b= (2(1—p+pso) 2(1=p)(1=p+pp) ) ’
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then

ﬁ0:B0_<2 Ainit + Ao p(p_SO)A(A'ini[‘i‘){)))’

(I-=p+pso) 2(1—p)(1—p+pp)
and

A(1—p +pso) (Ainit + o)
2(1—p)(1=p+pp)

~>

7.8. Prove Lemma 7.14, by combining the arguments of Lemma 7.7, with the idea
of Problem 7.5.

7.9. Apply Lemma 6.12 to the adaptive Lasso with the conservative variant (see
Section 7.6) for the choice of the weights. Does it improve the prediction error as

compared to the commonly used adaptive Lasso that we studied in Section 7.12 (see
Corollary 7.15)?

7.10. We give some guidelines for the proof of Lemma 7.5. First, check that

P
||fweight_f0||2+z'init2fweightij|ﬁweight,j‘ < ||fﬁs—f{)\\z-l-ﬂanitlweightzwﬂﬁj\-
j=1

Jj€s

Consider
Case i).

Hfﬁs —fOH2 < linitlweightHWSHZH(ﬁweight)S _ﬁSHZv
and
Case ii)

Hfﬁs —f0||2 > )l'initlweight”WSHZH(ﬁweighl)s — Bsll2-
Show that in Case i),

[l fweight — fo H2 + AinitAweight [ Ws||2]] (Bweight)s — Bs ll2 + AinitAweight Z W | Bueightj

J¢S
< 3initAweight | Wsl|2 || (Bweignt)s — Bs||2-

In Case ii), verify that

/linita'weight ||WS ||2 ” (Bweight)S - ﬁSHZ + ;Linita'weight Z wij |Bweight,j‘

J¢S
<3| £ — fOII%

7.11. In this exercise, we sketch the proof of Lemma 7.6. The first result is a special
case of Lemma 7.5, taking B = B* and S = S.. The second result then follows from
this lemma, as

[ Binit — B* l1 < /55| (Binit)s, — B |2+ [|(Binit)s¢ [|1-
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The third result follows from taking § = B* and S = .4 in Lemma 7.5, where .4/
is the set S, complemented with the s, largest - in absolute value - coefficients
of (Binit)se- Then || f5 , — fl = [|f* — f°||. Moreover @nin(2,-4",2s,) < ¢.. Thus,
from Lemma 7.5, we get

* * O+
Ainie v/ 28| (Binit) 4 — By 112 + Ainit | (Binie) a1 < 301F* = 117 + (Pzt :

Moreover, as is shown in Lemma 6.9 (with original reference Candes and Tao
(2005), and Candes and Tao (2007)),

3£ = fOI + 3225+ / 92

||(ﬁinit)</1/f||2 < ||(ﬁinit)Si - ﬁs*,i Hl/\/a < )Vinit\/i

Conclude that
652

*
init =P |l2 < :
||ﬁll’111 B || )vinit\/a




Chapter 8
Theory for ¢, /¢,-penalty procedures

Abstract We study four procedures for regression models with group structure in
the parameter vector. The first two are for models with univariate response variable.
They are the so-called group Lasso (see Chapter 4), and the smoothed group Lasso
for the high-dimensional additive model (see Chapter 5). We also discuss multi-
variate extensions, namely for the linear model with time-varying coefficients, for
multivariate regression, and multitask learning.

8.1 Introduction

Let, for i = 1,...,n, ¥; be the response variable in the univariate case, and Y;; =

Yi(t),t =1,...,T, be the response vector in the multivariate case. The covariables
are denoted as X; = {X/ 1 i=1,...,n (where the x") may be vectors of, for
instance, dummy variables). The co-variables are considered as non-random (i.e.,
fixed design). The empirical measure of the co-variables is 0, ;==Y | 6x,, and || - ||,

is the L, (Q,)-norm.
The four models we consider are

Regression with group structure

r sh
Yi= Z(Z&@ j0.z> +é&,i=1,...,n,

j=1\i=1

where the ﬁjo = 21 e /QT_/)T have the sparsity property [3j0 =0 for “most” j,

High-dimensional additive model
0y U)
V=Y fx)+e, i=1,...n,
j=1

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 249
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 8,
© Springer-Verlag Berlin Heidelberg 2011



250 8 Theory for ¢} /¢,-penalty procedures

where the fj(.) (Xl-(’ >) are (non-parametric) “smooth” functions, with sparsity property
f} =0 for “most” j,

Linear model with time-varying coefficients
" 3 ()
Yl(t) - ZXi] (t)ﬁjo(t) +8i(t)7 i=1,...,n,t=1,...,T,

where the coefficients ﬁjo() are “smooth” functions, with the sparsity property BJQ =
0 for “most” j ,

Multivariate linear model

)4 .
Y=Y XPBY ey, i=1,..n, 1 =1,....T,
=

with for B := (BY,,..., B))T, the sparsity property Y = 0 for “most” .

To avoid digressions, we assume throughout that the errors {g;, i =1,...,n} and
{&;:t=1,...,T, i=1,...,n} are independent and .4 (0, 1)-distributed, although
at the end of Section 8.6, we indicate that results can be generalized assuming only
bounded fourth moments for the errors.

The group Lasso was introduced by Yuan and Lin (2006). Oracle theory for small
groups was given in Meier et al. (2008), Bach (2008), Chesneau and Hebiri (2008)
and Nardi and Rinaldo (2008). With large groups, the standard group Lasso will
generally not have good prediction properties. Therefore, one needs to impose a
certain structure within groups. Such an approach has been considered by Meier
et al. (2009), Ravikumar et al. (2009a), Koltchinskii and Yuan (2008), Koltchin-
skii and Yuan (2010), and van de Geer (2010). We refer to this approach as the
smoothed group Lasso. For theoretical results for group Lasso as well as its mul-
tivariate extensions, see Lounici et al. (2009) and Lounici et al. (2010). In Meier
and Biihlmann (2007), the model with time-varying coefficients is estimated using
smoothing kernels.

8.2 Organization and notation of this chapter

For the four models, we use squared error loss, with an appropriate regularization
penalty that matches with the idea of sparsity in each particular case. We will prove
oracle inequalities in the same spirit as in Chapter 6, more precisely, Section 6.2.
Also bounds for the ¢; /¢;-estimation error are derived, which can in turn be used to
prove screening properties (of the large coefficients or under beta-min conditions).
The ingredients of the proofs are the same as in Chapter 6: an argument to handle
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the random part of the problem, which we again call the empirical process part, and
a compatibility condition.

We note that the models listed above have their counterparts in the framework of
generalized linear models. Indeed, the results of this chapter can be extended, to
general error distributions, general (convex) loss functions and general design.

The organization of this chapter is as follows. The group Lasso is studied in Section
8.3. Section 8.4 considers the high-dimensional additive model. There, and also in
Section 8.5 which looks at the time-varying model, we partly postpone the handling
of the random part of the problem to Chapter 14. Section 8.6, which is on the mul-
tivariate model, closes the loop. Each section consists of a subsection introducing
the loss function and penalty, a subsection on the empirical process, a subsection
introducing the compatibility condition, and then reaches its main result. The com-
patibility condition in the middle two sections need some further explanation, which
is done in the last section of this chapter.

Here is some notation, applied throughout this chapter. We will use both notations
with sub-scripts and with arguments, i.e., Bj; = B;(1), Xi(j) = Xl.(’)(z), &ir = &(t),
whichever is more convenient. For j =1,...,p,t=1,...,Tjand i = 1,...,n, the
Bijs Xi(‘t]) and g, are real-valued. The vector f; is throughout the vector f8; =
(ﬁj71,...,ﬁj7rj)T, j=1,...,p. When T; :=T is the same for all j, we can also
consider the vector B(t) := (Biy,...,Bps)T, t =1,...,T. The vector 7 will con-
tain all parameters ;. It is either the vector (8] ,...,B7) or its re-ordered version

(B)T.....B(T)T). ’

Fort=1,...,T;, j=1,...,p, we define

(e
X,(J) — .
x\J)
Forj=1,...,p, welet
| )
X(j> = (ng)a 7X%)) = )
X 2

and
£ .= (xUHT (X)) /n.

The diagonal elements of () are denoted by 6j2’,. When T; :=T for all j, we also
define, fortr =1,...,T,



252 8 Theory for ¢} /¢,-penalty procedures

1
Xl(,t) Xl(f;)
X[ fX(t) == N 5
Xy o Xy

2()=X"'X,/n,t=1,...,T

To exploit sparsity structures, we need the notation, for an index set S C {1,...,p},

Bis:=B{jeS} j=1,....p

The cardinality of S is denoted by s := |S|. The active set of a vector of coefficients
B is denoted by

Sg:=1{j: Bi=0},
with cardinality sg := |Sg|. We will consider various oracles 8*, with active set
Ss := Sp+, with cardinality s, = [S,].

Moreover, we define forr =1,...Tj, and j = 1,..., p, the random quantities
R SR SO N S g)
V]t = % i:ZIEiXi7I == %8 Xt

for the case of univariate response. For the case of multivariate response, where
T; =T for all j, we define

Zglf _78tTXt()a :17'--7Taj:1a"'7p'

7

Note that, for each j = 1,...,p, both V;, and W}, are .4 (076it)-distributed, that
V= (V.,-,],...,V,;Tj)T is .#(0,£U))-distributed, whereas the collection {W;,}”_,
consists of 7" independent random variables.

We consider penalized loss of the form

Ly(B)+ Apen(B),

where L, (+) is squared error loss, A is a regularization parameter, and pen(-) is an
¢y />-penalty, to be specified.

8.3 Regression with group structure

The results of this section are along the lines of Meier et al. (2008), and Chesneau
and Hebiri (2008).
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8.3.1 The loss function and penalty

Recall the model
)4 )
Yi=Y xVB0 e, i=1,...n,
j=1

. T .
where Xi(/)ﬁj =¥/ Xl-(’,/)ﬁjﬁt.
We can write the model in matrix notation

Y =XB"+e¢,

with over-all design matrix

1 1
X)Xy X el

:1 :1 : : ’
Xril) .. X;E])"l .. Xrgf’l) .. Xrgf’T)p

an n x pT-matrix, with T = Zi.’:l T;/p being the average group size.

The “truth” is now denoted as

EY := 1 = Xp°.

The loss function is
Ly(B) ==Y —XB|j3/n

and the group Lasso penalty is

pentB) = ¥ (IX7B;12 ) /7.

j=1
see also Section 4.2.1.

Note that the penalty is invariant under within-group reparametrizations. Therefore,
without loss of generality, we assume X U =1 , the (T x Tj)-identity matrix. Thus,
the penalty is

pen(B) = VT|Bl2.1,

where ||B]|2,1 is the ¢; /¢2-norm

14
11121 := Y IBill2y/73/T.

Jj=1

The group Lasso is
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A

B argmﬁin{ |Y—XB||%/n+xﬁ||ﬁ||z,1}.

8.3.2 The empirical process

The empirical process is

va(B) :=2¢eTXB /n
2 Tix(j)ﬁ/ - iVTﬁ
p= =
with V] := e"XU)/\/n, j=1,...,p. Because £() =1, the random variable ||V/;[|3

has a chi-square distribution with 7; degrees of freedom. Let for some A > 0 (see
Lemma 8.1 for a suitable value)

T = { max 4||V;||3/T; gnkg}
1<j<p

Define Tiyin :=min{7j: j=1,...,p}.

Lemma 8.1. Let, for j=1,..., p, the random variables sz be chi-square distributed
with T; degrees of freedom. Then for all x > 0, and for

4 4x+4lo 4x+4lo
o= (1 [Tttt
n Tiin Tinin

P ( max 4)(]2/7‘/» > nk&) < exp[—=x].

1<j<p

we have

Proof. By the inequality of Wallace (1959),

P(x} > T;(1 +a)> <exp {Tf (alog(l +a)>].

[\

We now use that
)

2(1+a)

a—log(l+a)>

This gives

P(x; > Tj(1+a)) <exp {_Z](lﬂ—fa)}

Insert
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4x  4x
a=|—+—.
Ty Tj
Then
a’ 4x
> T
I+a— T,
SO
4x  4x
2
P<X]2TJ<1+ TJ+TJ>> §exp[fx}.
Finally, apply the union bound. a

We have the following bound for the random part:

va(B }z AN
< G R Y VTIB
2 Wik
= 75 s L pen(8)

Therefore, on the set .7, it holds that

[Va(B)| < Aopen(B).

This leads to a choice A > Ay for the regularization parameter, as then the penalty
overrules the random part.

8.3.3 The group Lasso compatibility condition

We let, for an index set S C {1,..., p},

Ts = Z Ti/sa
jEs
be the average group size in the set S.

Definition 7he group Lasso compatibility condition holds for the index set S C
{1,...,p}, with constant ¢ (S) > O, if for all ||Bsc||2,1 < 3||Bsl|2,1, one has that

TIBsIE, < <||Xﬁllz/n>Ts/¢ (s).
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As the next lemma shows, the group Lasso compatibility condition is not more
restrictive than the adaptive restrictive eigenvalue condition.

Lemma 8.2. Let S C {1,...,p} be an index set, say, S = {1,...,s}. Consider the
full index set corresponding to S:

Sfull = {(1, 1),...,(1,T1),...,(S, 1),...,(S,Ty)},

with cardinality Tgs = Z‘;:l T;. Assume the adaptive restrictive eigenvalue condition
holds, with constant ¢adap(3, Stulls Tss) (see Subsection 6.13.2 and, for an overview,
Subsection 6.13.7). Then the group Lasso compatibility condition holds for S, with

o (S) 2 d)adap (37 Stulls Tss) .

Proof of Lemma 8.2. First we observe that

2
715112, =(Z ﬁjnﬁjuz) <Y Y 181B = Tisl By 2

JES jes  jes

Suppose now that
1Bselz1 < 3[IBsll2.1-

Then
Y IBilh < Y. V/TilIBill2 = VT Bscllo < 3VTIBsll21 < 3V Tss|| sy -

Jgs ¢S
So by the adaptive restricted eigenvalue condition
Bsea < (IXBI/n) /0235 T).
and hence

75131 < Tosl|Bsy I3 < (uxzs%/n) Tss/ 0up (3. S, o).

8.3.4 A group Lasso sparsity oracle inequality

Let . be a collection of index sets.

Definition of the oracle Assume the group Lasso compatibility condition for the
sets Sin .#. The oracle B* is
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= ar, mln SﬁSﬁ .
prewe m {IIXB CJ3/n-+ (Sﬁ)}

We define ¢. = ¢(Sp-).

Theorem 8.1. Tuke the normalization £) = I for all j = 1,...,p. Consider the
group Lasso

B:aIgHbin{HY*XﬁH%/”JrlﬁHﬁllz,l},

where

A =4,

4x+4logp 4x—|—410gp
20 —
f mln 1'1'111'1

Then with probability at least 1 — exp[—x], we have

with

241 TS* Sk

IXB —1213/n+AVT|If = B*|l21 < 6]XB* —|3/n+ ——5— Py

Comparing this result with the one of Theorem 6.2, we see that there is perhaps
little gain in the rate of convergence, i.e., it is essentially governed by the number
of nonzero coefficients Tg:s, =Y jes, Tj of the oracle, where Ty, s, is its full set of
active variables. Nevertheless, there may be a gain in the compatibility condition
(see also Lemma 8.2), i.e., the constant ¢, in Theorem 8.1 may be smaller than its
counterpart in Theorem 6.2. Moreover, if the smallest group size T, is bigger than
(say) 2log p and if we take x = log p (say), we get

Ao < 2+/7/n,

i.e., we win a (logp)-term in the lower bound for the regularization parameter A
(and the probability of the result is at least 1 — 1/p). In Huang and Zhang (2010),
one can find a further discussion of the advantages of the group Lasso over the
Lasso.

Proof of Theorem 8.1. The result follows from the Basic Inequality
IXB —113/n+AVT|Blla1 < va(B = B*) +AVT||B" |21 + X"~ |3 /.

So on the set .7,

IX(B —B*)I3/n+AVT| Bl
<AVT|B = B llat + AVT|B* ot + |IXB* — |2 /n.

The rest of the proof is now exactly as the one of Theorem 6.2. 0.
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8.3.5 Extensions

The penalty may be extended to be of the form
P
pen(B) =Y [|4;B)ll2,
j=1

where A; is a given symmetric positive definite (7; X T;)-matrix, j = 1,...,p, see
Section 4.5. In the previous subsection, we took AJT-A ;=T;£W for all j. The exten-
sion to other quadratic forms causes no additional theoretical complications, pro-
vided one can still handle the empirical process in terms of the new penalty.

We have
2 & Tﬁ
va(B):=—= Y. V/B,
\/ﬁj=1 ’
<2 |A;"Vj]l2pen(B)

The set .7 is then to be chosen as

= “Wil13 <nadl.
T {41r£]_agp|\A] Villz <ng}

To prove that the set .7 has large probability, we can invoke a straightforward ex-
tension of Lemma 8.1 to more general quadratic forms.

A convenient normalization is to suppose that for all j, trace(A;lﬁ(/ )A]TI) is con-
stant, say .
trace(A]TIE(J)AJfl) =1.

Then, for all j,
E|lA; Vi3 =1.

8.4 High-dimensional additive model

In this section, we discuss some results obtained in Meier et al. (2009), and van de
Geer (2010).

8.4.1 The loss function and penalty

The model is
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YfoO +£,, i=1,....,n

The functions fjo are defined on the space of the covariables X;j ). We moreover

define f0:= Z;’:l f? The functions f](.’ are assumed to be smooth, in the sense (see
Chapter 5) that there exists an expansion

. T .
27 =Y b (x)BY,,

where the {b;,(-)}]_, are given base functions (feature mappings). We assume that
the number of base functions 7 is at most n, and, to simplify, that it is the same for
each group j. (The latter simplification poses little restrictions, as it will turn out that
the group size plays a less prominent role, due to the application of a smoothness
penalty.)

Writing
X =bj (X)), j=1,.p ot =1, T i=1,...n,
brings us back to the linear model of the previous subsection:

-

0 .
~’,—|-8il=1,...,n

HM'\]

which reads in matrix notation
_ wRO
Y =Xp"+e.

The difference with the previous subsection is that on top of the group structure,
there is also some further within-group structure. We translate the smoothness of
f/Q in terms of bounds for some quadratic norm. For example, when considering the
Sobolev space of twice continuously differentiable functions, one may use a finite-
dimensional space of natural cubic splines, with some basis {b;,}, and write the
squared Sobolev semi-norm | | fj,./|2 of a function f; =Y, b;,B;, as quadratic form
B jTWjB i, with W; a given matrix of weights, see Section 5.3.

Returning to the general situation, we let B; be some given matrix and we apply the
penalty

p ) p
pen(B) := Y. [X/Bjll2/vn+u Zl 1B;Bjll2:
j=1 =

where ( is another smoothing parameter. The additional term ,LLZ _, [IB;jBjl|2 rep-
resents the regularization to achieve smoothness within groups. The matrices B; will
for this reason be called smoothness matrices. Note also that we do not merge the
two norms into one. The latter gives the alternative penalty
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P
Y\ IXIB; 13/ + 12183511
j=1

(see Section 5.4). This alternative penalty has some theoretical difficulties. We will
make a theoretical comparison of various penalties in Subsection 8.4.5.

Again, without loss of generality, we assume that £(/) = I. The penalty then be-
comes

)4 )4
pen(B) = Z] [1Bjll2 + p 21 1B;B;ll2
j= =

=Bl + 1l BBl
where B := (By,...,B,).

We examine squared error loss

La(B) := [IY = XB|I3/n.

The smoothed group Lasso is defined as

b= argmﬁin{||Y—Xﬁ||%/n+zan,l +/lu||Bﬁ||2,1}~

8.4.2 The empirical process

The empirical process is
vu(B) = 267X /n= = Y VI B
= n—= : e
n \/ﬁ = JFI

The behavior of the empirical process in terms of the penalty depends of course
heavily on the choice of the smoothness matrices Bj, j = 1,...,p. One needs to
show that for some Ay and Ly, the set

7= {|vn<ﬁ>| < 20l1Bla1 + Aotio BBl Vﬁ}

has large probability. We consider two cases: Sobolev smoothness (where we only
sketch the results) and diagonalized smoothness. Throughout, we assume that £(/) =
I for all j, i.e., that we have a normalized design.
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8.4.2.1 Sobolev smoothness

Here, we give a brief indication of the behavior of the empirical process when
||BjBjl|2 corresponds to the Sobolev semi-norm in the space of twice continuously
differentiable functions. More details can be found in Section 14.11.

When ||B;B;||3 = f\f}:ﬁj 2, with fi8;(-) = Lbj:(-)Bjs, it can be shown that for

normalized design, P(.7) is large for Ay = o = O(log p/n)*/>. The idea to prove
this is that, for oo = 3/4, the following result for the increments of the empirical
process holds: for n — oo,

VI B;

18;8;2<1 [1BjlI3

- OP(1)7 VJ,

see Corollary 14.8. In fact, one can prove that the result holds uniformly in j at the
cost of a (log p)-factor:

= Op(+/logp).

VIB;
max  sup
1<i=p ;<1 IBill2

This follows from the exponential bound in Corollary 14.6. So then

P
vi(B)1 < O (ﬁ) 3 15 11

Using the inequality (which holds for any 0 < o < 1)
a®b'""* <a+b,a,b>0,

this leads to the choice

1 1
lo 2(2-a) lo 22-a)
aeo(M2) o (2)

So far, we formulated the results for the space of twice differentiable functions, with
o = 3/4. The results can be extended to spaces of m times differentiable functions.
In that case, one takes @ = 1 —1/(2m).

8.4.2.2 Diagonalized smoothness

We consider now a rather explicit description of “smoothness”, with as main pur-
pose to be able to provide a simple derivation of the behavior of the empirical pro-
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cess. This derivation is given in Lemma 8.4. It is based on Cauchy-Schwarz and
Holder inequalities, and on the behavior of the maximum of a finite number of
Gaussian or chi-squared distributed random variables. The counterpart of Lemma
8.4, for Sobolev semi-norms as sketched above, is be based on entropy arguments
(see Section 14.11).

Consider the penalty
P
pen(B) := Y IBjll2+mlDBjll2 |
j=1

where U is a regularization parameter, and
D := di.’:lg(dl,dz7 .. .),

i.e.,
IDBE =Y d?B2, j=1.....p.
t

Moreover, we assume that d; is increasing in ¢, in fact, that
__sm
d,=1",

for some m > 1/2'.

We define
Ty
2. 2
X=X Vi
=1

where Ty < T is a hidden truncation level. We take

1

Ty = |n2n7T | +1, (8.1

tacitly assuming that 7', the number of functions b;; as ¢ varies, is at least this
large. Note that, in the case of normalized design, for each j, the {Vj_,,} are i.i.d.
(0, 1)-distributed, and hence that x} is x%o—distributed. For the random quantities,
we derive bounds involving the following expressions (based on Lemmas 8.1 and
6.2). Let, for x > 0,

V2o 2x +2log(pT)

0 2m— 1 ’
and
4x+4lo 4x+4lo
53::1—4— #gp_’_ #gp.
n2m+1 n2m+1
Take

2m

7LO2 =dn! —|—4n_m§02,

! One may, loosely, think of the {b;,}T_, as eigenfunctions, and the {d,}]_, as eigenvalues, for the
space of functions having m derivatives (say the Sobolev space {f; : [0,1] = R, [ |fj(rn) [> < oo}).
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and )
il
lgug =4n~ 2mtl vg.

We begin with a technical intermediate result, that we state here for later reference.

Lemma 8.3. For all j, it holds that

B < (/v ) 1812
+ (mtax Vil [n(Zm — 1)T02’”‘] Uz) I1DB;l[2- (8.2)

Proof. Apply the inequality of Cauchy-Schwarz and Holder’s inequality, respec-
tively. This gives

Zﬁjzf max\Vjt\Z|[3H|

t>Ty

s(mhm)WArH@MWA¢;y2memm.

Y < {(2m— 1)T02m1] _1.

t>Ty

7|V Bil < x;

Moreover,

O

Lemma 8.4. Consider normalized design, that is £ =1 for all j. We have with
probability at least 1 — 3 exp|[—x], simultaneously ¥V j3,

P P

Va(B)] < 2o (Z 1Bjll2+ o Y IIDsz> ~
j=1 j=1

Proof. Remember that

wB) = 2= 1B
£

The choice :
Ty = anj +1,

1 1
has nznt1 < Ty < 1+ n2n+1 and hence

To 1 __2m
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and
4m

e — < n Zmfl,

nTy™™

So by Lemma 8.3
1 _ om
SR < (Vo #5181
2m
+ (max vyl #1201 ) DBy -

The result now follows from Lemma 6.2 and Lemma 8.1 which show that with
probability at least 1 — 3exp[—x], it holds that

XJ/\/ TO < 5()’ mtax|vj,t| < Vov 2m— I,Vj,l‘.

8.4.3 The smoothed Lasso compatibility condition

We consider functions

Fip, () =Y bjs()Bjs-

t=1

Without loss of generality, we may think of the X; all in some common space 2~
and all f 7B as being defined on this space 2~. We write

p
fﬁ = ij,ﬁja .BT = (ﬁlTavﬁ;)
=

Let || - || be some norm on the set of real-valued functions on 2". Write furthermore

peny (B) == p[[BBll2x = 1 Y 1IB;Bjll2-

We assume that the L, (Q),)-norm || - ||, can be approximated by || ||, in the following
sense:



8.4 High-dimensional additive model 265

Definition The approximation condition holds for the additive model if there exists
an M > 0 such that for all B, we have 2

‘Hfli”n ||fﬁ\
¥, 175 - pem()

<.

An illustration of the approximation condition is given in Section 8.7

With this approximation condition, the compatibility condition can be formulated in
terms of || - || instead of || - ||,,. Let us recall the advantage of being able to switch to
a different norm. In L,(Q,), any collection of more than n vectors will be linearly
dependent. With a different (Hilbert) norm, we may have linear independence, and
even reasonably large eigenvalues. We in fact only need to control (a lower bound
for) the compatibility constant (denoted by ¢ (S) below).

Definition The smoothed group Lasso compatibility condition holds for the set S,
with constant ¢(S) > 0, if for all B with

Y i +pena(B)/3 <5 11l (8.3)

j#s j€s

it holds that
Y 58,17 <1317 /97 (S)-

jes

We note that the collection of f .B; that satisfy (8.3) can neither be too non-

sparse (since Y. js || /5,1l < 5 ¥ jes || fjp, ) nor too non-smooth (since pen,(f)/3 <
5Yjes | fjp;ID- That is, we restrict the f; g, substantially, which makes the compat-
ibility condition true for a relatively large number of situations.

8.4.4 A smoothed group Lasso sparsity oracle inequality

We define

pen; (B) == [|Bll2.1 = Y_[IBjll2. pens(B) := ul|BB

21 = HZ 1B;Bjl|2,
J

and

2 Compare with Lemma 6.17. Its proof employs the following observation. Let || /B I?:=B7EB
and Hfﬁ”2 = ﬁTZﬁ. Then |Hfl;Hﬁ — Hf,;H2| < M|ﬁH2, where A :=max; |6 — 0jx|. So then

sl = 15p1] /181 < VA= .
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pen(B) := pen; (B) +peny(B).
Let .¥ be a collection of index sets.
Definition of the oracle Suppose the smoothed group Lasso compatibility condition
holds for all S in .. The oracle is
16A%(Sg|

B = argmm{w

+115 = f°II% +2peny (B) :

Sg €7, |Sﬁ|n/¢(5ﬁ)<1/l6}.

¢ 1= 0(Ss), and f* := fg-.
Observe that we minimize over a restricted set of 3, tacitly assuming that this set is
not empty.

Moreover, we let S, := Sﬁ*, s =S4,

We are now ready to formulate an oracle inequality for the smoothed group Lasso.
Before doing so, we present the first steps of the proof, for later reference when
considering alternative penalties (Subsection 8.4.5).

Let .7 be the set

T = {2|e"XB|/n < 20||Bl2,1 + Aopto||BB2.1, ¥ B}. (8.4)

By Lemma 8.4, in the case of diagonalized smoothness, with the values Ay and L
defined there, the probability of .7 is large (for x large):

P(7) > 1—3exp[—x].
This can be accomplished by taking
Ao = n” T g =< n~ i1 \/log(pn)

1 . .
(using T < n, and assuming that log p/nz»+1 = O(1)). Such order of magnitude is
appropriate for more general smoothness semi-norms, with m being the smoothness,
e.g, the number of derivatives a function possesses.

Let us write as usual

~

f fj ::fj,ﬁj’

<~
i
T Mv T Mm

\
i

fJ ' fJ : fjﬁf'
Recall the Basic Inequality

17 = fOII2 + Apen(B) < 2(e, f — f*)u+Apen(B*) + [|f* — fO|I2.
Hence, on .77, when A > 4y and A u > 4y,
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A N A n
IF = 7°lla+ Apen(B) < Zpen(B —B*) + Apen(B) + /" = f°IIF. (8.5

This inequality is the starting point of the proof of the next theorem. We remark that
hence, the specific form of the penalty is mainly used to make sure that the set 7
has large probability, and that there are therefore many generalizations possible.

As a first step, we present a straightforward consequence of (8.5), which relies on
the fact that pen(8) = pen; (B) + pen,(B). One easily checks that

41— £°)12 +3Apen(Bs: ) + 3Apen, (Bs, — B;.)
< 5Apen; (Bs, — Bs.) + 4] f* — fO)|2 + 8Apen, (B). (8.6)

Theorem 8.2. Take the normalization £ i =1 forall j. Consider the smoothed group
Lasso

A

= argﬂbin{llY—XmI%/”Mﬁllz,l +/1H||Bﬁ||2,1}~
Suppose that A > 44y and Ayt > 4Agto. Then on

T = {21e7XB /1 < AolBll2a + Aokt IBB 2.1,
we have

1f = 717+ Apen(B — B*)/2 < 3{1612s*/¢3+ I/ f°||ﬁ+2lp€n2(ﬁ*)}-

Asymptotics. As a consequence, say for the case of diagonalized smoothness, with
A =<n 2T and p < n T \/log(pn) (using the bound T < n, and assuming

logp/nW1+1 =0(1)), we get

A _ 2m_ % _2m *
||f—f°|ﬁ=op(n 5 )02 4 £ — foll 40 Jog(pm) Y DB ||2)-

JESs
8.7
Proof of Theorem 8.2. Throughout, we assume we are on .7 .
Case i)
If
Apen; (Bs, — Bs,) = |17 = f°lla+2Apeny(B°),
we get

4Hf—f0||,2, + 37Lpen(l§gg) +3lpen2(ﬁ5* —Bs) < 9lpen1([§g* —Bs.)- (8.8)

So we then have

pen(Bse) + peny (Bs, — Bs.) < 3pen; (Bs, — B3.).-
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We may apply the approximation condition to B — B*. This will allow us to switch
to the norm || - ||, and then invoke the smoothed group Lasso compatibility condition.
Recall that [|Bj[|2 = [| f; g, |[n- By the approximation condition

1B = B} ll2 < (L+m)IIf; — f1 11+ nulB; (B — B2,

and . A .
1Bj = Bjll2= (L =n)llf; = £ | —=nulB;i(B; — B2

It follows that

3peny (Bs. = Bs,) < 3(1+m) Y [1fs— f71l+3npeny (Bs. - Bs.),

JES«
and . .
pen(Ps: ) +pen, (Bs, — Bs,)
) Y 17l + (1 —n)pen, (Bs:) + pen, (Bs, — Bs. )-
JES+
Thus,
—-3n A
Y 1171l + pen, (Bse) + peny(Ps, —fs,) <3 1 Z 175 =1l
J¢S* n n JES«

Since 1 < 1/4, we conclude that

Y 173l +peny(Bss) +pens (Bs. — Bs.) /3 <5 Y IIf5— f71I

Js. jés.

Hence, we may apply the smoothed group Lasso compatibility condition to B —pB*.

We now restart from (8.8), and add a term 3Apen, (fs, — Bs.) to the left- and right-
hand side:

41| f = fO)12 + 3Apen(Bsc ) + 3Apen(Bs, — B3,) < 12Apen, (Bs, — Bs.)
<12A(1+1) Y [Ifj = £7 ]|+ 122mpeny (Bs, — Bs,),
jES.

which implies, using n < 1/16 < 1/4,

16]1f = 17 + 12Apen(Bs:) + 9Apen(Bs, — ) <604 Y [If;— f7].  (8.9)

jEs,

AY = Fill<Avs, [Y 17— 1P
JESs JES«

S RVER VR VL

Now
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Moreover, switching back to the || - ||,,-norm,

If = W< = £+ N5 = £ 1+ mpeny (F = f7)
J

<N =S laron Y 1= +3 npenz(f [

JES«
We have thus established that
f
If=flln+6n Y 15— FlI+5 npenz(ﬁ B) ).

JESK

AY Ifi-fills ==

JESK

As /s, n/¢. < 1/16, we get by the approximation condition

SAVS, (12 ) o
ljg*HfJ f/H—5 . (|f—f ||n+§npen2([3_ﬁ ))
< SAVAT— £ la/0" +pemy(B — B7)/15.

Returning to (8.9), we see that

16]| 7 — #2112 + 124 pen(Bse ) + SApen(Bs, — Be.) < 96AV5,||f — F* |1/ ¢s-

Dividing by 8 and, to simplify the expression, inserting the bounds 12/8 > 5/8 >
1/2 yields

2017 = 212+ Apen(B — B)/2 < 12AV/5. || f = £*[ln/ 6.
Now, using the triangle inequality, and twice the bound 2ab < a® + b2, we see that

1225, 1 = £¥(ln/ 9 < 1245 || = fOlln/ b + 12A8/5, L F* = £0ln/ 0

36% Sk 1222%s,
- 292 292

A 16A2%s, .
— 17~ PR+ 3{ e 1 - IR

+1IF = £+ +31 £ = £

Case ii)
If .
Apen; (Bs. — Bs,) < [If* = /Ol +2Apeny (BY),

we obtain from (8.6),
41 = £Ol17 + 3Apen(Bs: ) +3Apen, (Bs, — Bs.) < 9IIf* — O[5+ 18Apen, (B7),

and hence
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41 f = £ln+3Apen(B — B*) <12 f* — f°||5 +242peny(B).

8.4.5 On the choice of the penalty

The penalty we proposed in the previous subsections is additive in f3;, with each
term consisting of two parts. The first part || ;|2 is simply the ¢>-norm of f3;, and
the second part ||B;f;]|» can be seen as representing the smoothness of fip;- We
now consider some alternatives. Throughout, to simplify, we confine ourselves to
the case of diagonalized smoothness, i.e., for all j, and for a given m > 1/2,

Bj=D,DB;=Y diBj;, d=1".
1

8.4.5.1 Using only one of the two terms

One may ask the question: what happens if only one of the terms is included in the
penalty? To address this, let us reconsider the empirical process v, (). Lemma 8.4
shows that with our choice of penalty, and with a proper choice of the regulariza-
tion parameters A and u, the empirical process is “overruled”. In order to see what
happens if we take a different penalty, we now leave the “hidden truncation level”
Tp to be specified, instead of fixing it at the value given in (8.1). The straightforward
bound we applied throughout is

p
Va(B)| < ZIIVJTﬁjI/ﬁ-
j=

We know from Lemma 8.1 and 6.2 respectively, that, uniformly in j, for X,z' =
£, V7 |

t=1"j1t°
%i/V/To = Op(1)

(assuming that log p/Ty = O(1)). Furthermore, uniformly in j and ,

Vi: = Op(\/log(pT)).

Thus, as in Lemma 8.3, for any given T, and taking care of the extreme values

{0, T} for Ty, we have
1, , [T,
%H/j Bil < Op ( n) 1B;ll2
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log(pT) 4
+0p < ) ]>> IDB;||21{To < T} (8.10)

If the penalty only includes the terms ||3;||2, this suggests taking the hidden trun-
cation level T equal to 7. In that case, the second term vanishes, leaving as first

term
1 T
Vﬁﬁ%ﬁ%(%)ﬁm.
T
.

for the regularization parameter. The rate of convergence (for the prediction error,
say) is then of order

This leads to the choice

Ts,
ng?

where s, = |S[;*| is the sparsity index, and f* = fg+ is a modified version of the
oracle defined in a similar version as in Subsection 8.4.4, ¢, being an appropriate
compatibility constant. Note that when taking the actual truncation level T of order

M—ﬁmzm( -Wﬁ—ﬁM)

1
n2zn+1, we then get

__m
A= n” I

and hence
N _ 2m %
|U—f%ﬁ=oszMHaﬂﬁ+Lf—ﬁ)@.

The situation is then as in Ravikumar et al. (2009a), with T playing the role of a
second regularization parameter. The estimator is then called the SPAM estimator
(for Sparse Additive Modelling). Observe that there is no \/log(pT)-term in this
case. However, the result is not directly comparable to (8.7) as the oracle B*, and
hence s, and the approximation error || f* — f°||2 are different entities. Let us spend
a few thoughts on this matter here. Suppose that the true f° is additive: f© =Y i f]o.
Suppose in addition that the fj(-) are smooth, uniformly in j, in the sense that fj(-) =
Yo, Bt(,)jbj,t ({bj;}!, being an orthonormal system in L»(Q,) (j =1,...,p)), and
Yi_ 2"|BY,[* < 1forall j,and B, = 0 for all (j,¢) with j ¢ So. Let so = |So|. Then
an actual truncation level T of order T =< nZ# T allows for an approximation f7

. . . . . . 772’”
with the first 7 basis functions, with approximation error || /7 — fjo||% =0(n 7)),
uniformly in j. So then,

2

¥ 1 = 1212 = 0w 7 s0).

J€So
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Let f* =Y, f;. Using the triangle inequality, the approximation error || /* — FadlF:
can be bounded by
I = 113 = 0~ 5t1s}),

i.e., we see the squared sparsity index s% appearing. To reduce this to sop may require
the price of some log-factor, appearing say when using a switch of norms as in the
approximation condition. We finally note that the above illustration assumes that
a single truncation level Ty provides a good approximation for all ff) In general it
will depend on the smoothness ||D[5JQ [l of fJO It is thus still to be clarified rigorously
how SPAM of Ravikumar et al. (2009a) and the smooth group Lasso compare in
various situations.

We now consider the other extreme case. If the penalty only includes the terms
||DB;]|2, then (8.10) suggests taking 7y equal to 0. We then get

1 T log(pT)
75\",‘ Bjl < Op ( — | IDBjll2.
This leads to the choice
log(pT)
AU =< —=2
" n

This corresponds to the situation in Koltchinskii and Yuan (2008). We note that
such an approach leads to the rate

. 1 X
1f = 10112 = Oe ( ePT) S: \ s —f°||,%> :

no 97

where the oracle f*, the sparsity index s, and the compatibility constant ¢, are
defined in a analogous fashion as in the previous section. We conclude that the
smoothness penalty alone possibly leads to a slower rate of convergence.

8.4.5.2 Taking a single square root

As explained in Section 5.4, one may prefer (from a computational point of view)
to take the penalty

p
pen(p) = 12 VIBill2+ 12108 3

However, our proof then leads to a, possibly substantial, loss in the bound for the
rate of convergence. To explain this, let us, as before, write
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P P
pen;(B) =Y [IBjll2, peny(B) := Zl DB l2-
j=

J=1

Inequality (8.5) now says that on the set .7 defined in (8.4),

I = 117 + Apen(B)

< % (penl(ﬁ —B*) +pen, (B —ﬁ*)) +[If* = fol> + Apen(B*).

Using the bound va+b > (\/a-++/b)/+/2 we see that

17~ 42 (5 - 1 ) (penu(Bi)pen) ) 2 (5 -

¥ )penz(ﬁs*—ﬁsi)

FN -

<3+ 7 JpemBs. — B3+~ ol + & (14 = Joens(p)

PR 2
2 (1 - \]ﬁ)penl(ﬁ*).

This is exactly inequality (8.6) above Theorem 8.2, except that in (8.6), 1/ V2 is
equal to 1 instead. This means we have to adjust the constants, but what is worse,
we are also confronted with an additional term A (1 — 1/v/2)pen, (B*).

Alternatively, we may use the inequality

? \/E ) \/j A * *
1 =220+ (15 Jpen(Bi) < 2 (147 Jpenths. ~ B6) + 17~ 1
\/i A * ) * *
< (1422 ) (e — 5+ penaBs, - B5) ) + 17 = 1
But with this, we have no tools to bound the smoothness term

peny (BS* ) )

unless we impose additional assumptions, such as
Pen2(ﬁ3* - ﬁ;f*) S COnSt. penl (ﬁs* - ﬁg‘;)

Problem 8.3 gives an example where indeed the separate square root penalty pro-
vides substantially smaller prediction error than the single square root penalty.
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8.4.5.3 Taking the squared instead on the non-squared smoothness norm

Again, from a computational point of view, the following penalty may be easier:
p p )
pen(B) ==Y [IBjll2+u Y. IDB5-
j=1 j=1

However, then again our proof leads to a, possibly substantial, loss in the bound for
the rate of convergence. To explain this, we write as before

pen, (B) := illﬁjllr

Inequality (8.5) again gives that on the set .7 defined in (8.4),

If = 1212+ Apen(B)
A Au &
< gpom (B =)+ 5 L I(8y Bl + 15— oli+ Apen().

This gives, as counterpart of inequality (8.6) presented above Theorem 8.2,

17— 1213+ Sapeny (Bss) + A X (IDB13~ 1Ds112/4)

]¢S*

w4 Y (ID(B; — B7)I3/2 = ID(B; — B))ll2/4)

JES«

5
< ZApen; (Bs, — Bs.) + 1" — folla +2Au Y IDB; |13-

JESK

.;;

The problematic part is the term

> (IDB;IB~1DBy12/4) .
JES«

If | D |2 < 1/4, the j-th term will be negative, and hence needs to be transferred
to the right-hand side. In the worst case, we therefore may get an additional term of

order A
2w Y (I3~ 10B,112/4).
]¢S*

which can be as large as < A (p —s. ), which is < A?(p —s..) for A =< u. So actually,
this approach may give a huge prediction error.
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8.4.5.4 Taking a single square root and adding a squared smoothness norm

A way to circumvent computational difficulties and keep nice theoretical properties
is using the penalty

P P
pen(B) == Y /18113 -+ DB I3+ Y DB 13-
J=1 Jj=1
As counterpart of inequality (8.6) presented above Theorem 8.2, we propose

= f°||n+/1(\f ~3) X (1B uIDB )+ an X 108,12
J§Ss ¢S

/1 Y 1B =B l2+1lf* f‘)HerluZ 5|DB;[l2/4+IDB; 13)

JES«

a1 Y (51DB;la/4~ DB 1B).

=

What we did here is move the term Au Y jcs, ||D[§j||2 to the right-hand side, i.e.,
it does not have a role anymore as penalty. It is simply overruled by its quadratic
version, as

R N 25
Au Y, (SIIDB;lI2/4~ IDB;1I3) < aa MHs

JES«

One can therefore derive an oracle inequality of the same spirit as the one of Theo-
rem 8.2.

8.5 Linear model with time-varying coefficients

8.5.1 The loss function and penalty

The model is as in Section 5.8
P
Z ) +&(t),i=1,...nt=1,..T.

The “truth” is denoted by
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We assume that ﬁjo() is smooth, in the sense that there is an expansion of the form
0 R
ﬁj(l‘) = ij,r(t>')/j,ra j: 17...,p, = 1,...,T.

r=1

For example, the {b;,(-)}* | may form a basis for a finite-dimensional space of
cubic splines.

With the expansion, we have for each ¢ a linear model: in matrix notation

Y(1) =X(1)B (1) +e(t) = (X“)(I)b(l) (1), XP (1)p7) (t)) y+e),

where

and where
X(t):= (XD (),....XP (1)),

with X0 () := (xV(0),...,. X" (1))T, j=1,..., p. Furthermore,

T
)l "R
Tr Yp,1
Yo.R
The time-varying coefficients are
Biy (1)
Bt) = Pylr) := S
ﬁPJ’p (t)

with
Bj(t) = ﬁj,yj(l) = b(j)(t)jfj, j=1,...,p.

The over-all design matrix is
(X(l) bV (1), XP)(1)pP) ([)) )

The matrices X/)(£)b/)(¢) are n x R matrices, which are clearly of rank 1. Hence,
it is quite obvious that for exploiting the smoothness structure, one needs to analyze
the T models simultaneously.
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The squared error loss function is defined as the average squared error for each of
the T linear models, i.e,

1
La(y) i= = Y IY(0) = X (B (1) 3
nl =
For a function g : R — R, we use the notation

2 1{ 2
Igll7 === ) & ().
r=
Then we have

183l = 14,72,
with

The penalty is chosen in the same spirit as in Section 8.4, namely,

)4
pen(B,):= Y (Iﬁjllr+u||3ﬂ’/llz>

J=1

= [|AYll2,1 + pl[BYl2,1,
where, for each j, B; is some given smoothness matrix.

The smoothed Lasso for the time-varying coefficients model is
A 1 ¢ >
7i=argming — ¥ [IY() = X(O)By(1)|I2+ A[AV]21 + AplBYl2.1 -
=1

We let B(-) = Bs(-).

8.5.2 The empirical process

The empirical process is

S|

2

Vn(ﬁ) = ﬁ

€T (0X()B(1) = }Z (W;.B))r

1

™=

t=1

where, for j=1,...,p, W;, := € (t)XU)(t)//n,t = 1,...,T, and where W; is the
vector W; = (W 1,...,W, r)T. Moreover, we use the inner product notation
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1 T
(W, Bj)r = = ) WiaBi(0).
t=1

Recall that for each j, the {W;,}/_; are independent, and .#"(0, 67, )-distributed,

with variance 67, = (X()(1))" (X\)(1)) /n. These variables now formally play the

role of “noise” variables. Consider the set
T = {2|(W;, Biy)rl/v/n < AollAjvjll2 + Aopo|B;vjll2s ¥ ¥55 Y i}

When the co-variables Xi] (t) are properly normalized, say 612.,: =1 for all j and ¢,
and if, say, the f3;(-) are in the Sobolev space of m times continuously differentiable
functions, then it can be shown that .7 has large probability when both Ay and g
are chosen of order (log p/(nT)) T, for T — oo, and n possibly remaining finite.
This is in analogy to the additive model, with W;; playing the role of &;.

8.5.3 The compatibility condition for the time-varying coefficients
model

Remember our definitions of the empirical norm and the time-dependent norm re-
spectively,

Ly o2,

N |
™~

1 n
£l = ;;fz(xi% lgllr =

t=1

(There is some ambiguity in the notation, which we believe to be acceptable). For a
function A(-,-) depending on both co-variables X;(r) € 2" as well as time t € R, we
define the norm

1 T n

= ¥ Y R(Xi(0).0).

t=1i=1

1Allnr =

The compatibility condition is again a way to deal with linear dependencies when
considering more than nT elements in an n7T-dimensional space. We therefore first
introduce some approximating norm on the space of functions & : 2" xR — R,
which we denote by || - ||.

Arriving now at a switch of norms, it is convenient to use the function notation: for
x=xW,. xPye 2,
Ty (x) :=xB(t).
We write short hand
fp:=1p) ()
Thus,
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33 (08 ) Z X)) 3/ T,

t=1i=1

1

2
”fﬁ ||n,T = nT

As in the previous section, we further denote the two terms in the penalty as

pen; (By) := [|AYll2.1, peny(By) := u[|BY]|2.1-

The approximation condition is now as in Subsection 8.4.3.

Definition The approximation condition holds for the time-varying coefficients
model, if there exists an 1 > 0 such that for all B = (Bi,...,B,)", we have

]nfﬁ”— ||fﬁ||]
>, BT+ peny (B)

Definition 7he compatibility condition for the time-varying coefficients model
holds for the set S, with constant ¢(S) > O, if for all B with

Y 1Bl +peny(B)/3<5 Y 11B;ll, (8.11)

jés jes

one has the inequality

Y IBiI% < 17517 /9%()-

jes

8.5.4 A sparsity oracle inequality for the time-varying coefficients
model

Definition of the oracle Let .7 be a collection of sets for which the compatibility
condition for the time-varying coefficients model holds. The oracle is

i . (16A2%]Sg]
B = By :=argmm{ Bl — 2112+ 2peny(B) -

9*(Sp)
S[;Ey, Sﬁn/¢(55)§1/16}.

Moreover, we let @, := @ (S,), 5. 1= |S,],

J* = fps andf::fB.

Let us recall the set
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T = 1{2|(Wj, Bjy)rl/(Vn) < XollA;vill2+ Aottol|Bjjll2, ¥ 75, ¥ -
Theorem 8.3. Consider the smoothed Lasso for the time-varying coefficients model
BBy nenmin{ L= ¥ IV0) - XOB 03+ Aarlar +aula |
Suppose that A > 4y and A > 4AyUo. Then on 7, we have

1f = £l7.r + Apen(B — B) /2

< 3{16kzs*/¢3+|f*—f“§+2flpen2(ﬁ*)}~

Asymptotics. As a consequence, say for the case where A < (log p/(nT)) 2" and
1 = (log p/nT )% for T — oo, and assuming P(.7) — 1, we get
17 = £l
log p\ 1 I
ogp \ =l sy ogp
= B
o((SB2) ™ S - il (RE2 ) ¥ 8712

JES«

One can clearly see the gain of exploiting the smoothness, over performing a
Lasso on each of the T models separately. For a somewhat more detailed view
on this matter, let us take . = {So}, where Sy is the active set of the truth
FOx(0),1) = Ljes, X (1)B2(1), where B = Bo. Let 5o := |So| and ¢o, be the
restricted eigenvalue for each single linear model. Define ¢9 = min; ¢p,. With
the smoothed group Lasso for the time varying-coefficients model, assuming the
smoothness ||B jyj.) l2 <1, we get a prediction error with order of magnitude

0P<<10gp> 2m+| S0 >’
nT (PO

For the individual Lasso’s, we have in the worst case (the case where ¢p; is the
smallest), a prediction error of order of magnitude

logp'\ s0
o((5)3)

1 . .
Hence, when T >> (n/log p)2n, the smoothed group Lasso gives, according to our
bounds, better performance than individual Lasso’s. It means that the gain in perfor-
mance is higher when m, the amount of smoothness, is larger.

Proof of Theorem 8.3. The Basic Inequality is
1 = £°l7.7 + Apen(B)
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<Va(B =B+ 1" = £2ll7.r + Apen(B*).
Hence, similar to (8.6), on the set .7, and defining B;s(-) = B;(-)l{j € S} =
b9 (s,
417 = 1Olln.z +32pen(Bs:) +3Apeny (Bs, — Bs,)

< 5Apen; (Bs. — Bs.) +4Ilf* = £z + 8Apeny (B7).

Thus, we can follow the line of reasoning as in the proof of Theorem 8.2.

8.6 Multivariate linear model and multitask learning

The results of this section are mainly from Lounici et al. (2009).

8.6.1 The loss function and penalty

The model for multitask learning is
" ) g0
Yie=Y X;B} i+ €, i=1,...,n,0=1,...T
=1

When, for all i and j, the covariate Xl-(tj ) = Xi(j ) does not depend on ¢, this is the

multivariate linear regression model. See also Section 5.9.

The “truth” is denoted by
0 .=EY,,

where Y, := (Yi4,... ,Y,,_VI)T.

The squared error loss is averaged over the T regressions, giving
1 & 2
La(B) = —= ) IY: =X:B(0)]]3,
=
with B(#) := (Bis,---,Bps) .t =1,...,T. The penalty is

pen(B) i illﬁjllz/ﬁ = 1Bl /VT.
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Thus, the idea is that the regressions share the non-zero coefficients, i.e. (for all j),
either [30 =0forallz, or B Ot = 0 for all t. The Lasso for multitask learning is

ﬁ—argmm{ znn X B3+ 4B l21/VT }

One easily sees that the situation is similar to the one of the previous section, except
that the penalty does not have a smoothness part.

8.6.2 The empirical process
The empirical process is
2 ¢ o1 2 T
=—) X p(t)=—7=) W:p;
ﬁ) nT,ZZ{ t lﬁ() T\/ﬁ]:Z’l jﬁ}?

where W, := (Wj1,....,W,;7)" and W, := SITX,(j)/\/ﬁ.

Lemma 8.5. Suppose that 6/27, =1 forall jandt. Let, for some x > 0,

4 4x+4logp 4x+4logp

2 /

=11 .
% n( i T N T

Then with probability at least 1 —e™, it holds that simultaneously for all j3,

Va(B)| < 20||Bl21/VT.

Proof of Lemma 8.5. We have
LA p
Y WBi < Y Wl
j=1 j=1

max [[W;l2||Bll2,1-

l<<

The random variables |W;|[3, j = 1,...,p, all have a chi-squared distribution with
T degrees of freedom. Hence, by Lemma 8.1,

P AW > >nTAZ | <e™™.
(ggfgp [W;ill*>n lo)_e
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8.6.3 The multitask compatibility condition
We let (XB)T := (X1 B(1))T,...,(X7B(T))T), and we write
2 I ¢ 2
IXBlr = T Z 1X:B(1)|13-
=1
Definition We say that the multitask compatibility condition holds for the set S if

for some ¢(S) > 0 and for all B with ||Bsc||2.1 < 3||Bs||2.1, one has the inequality

i, < IXBIEATs
2,1 =7 57y

9%(S)

We can compare the multitask compatibility condition with the adaptive version of
the restricted eigenvalue condition we would use if we consider the 7" univariate
regressions as one single regression with n7 observations and design matrix

X, 0 ... 0

0 X ... 0
X: . . . . )

o 0 ... Xr

an (nT x pT)-matrix. This model in matrix notation is

Y =XB%+¢,
where now 0
Y, B (1) &
Y= : |,B%:= : ,ei=|
Yr BO(T) er

The univariate restricted eigenvalue condition is then as in Section 6.13.2:

Definition The univariate adaptive restricted eigenvalue condition holds for the
set S C {1,...,p}, if for some constant @adap(3,Stut, Ts) > 0, and for all B, with

Yjes IBilli <3VTsy/¥jes IBjl3, one has

Y 1818 < <||Xﬁ||%/n> /625003, S 7).

jes

The next lemma is the counterpart of Lemma 8.2.
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Lemma 8.6. Suppose the univariate adaptive restricted eigenvalue condition is met
for S, with constant ¢adap(3,Sfun,Ts). Then the multitask compatibility condition
holds, with constant ¢ (S) > Padap (3, Sturr, T's).

Proof of Lemma 8.6. First note that

1Bsllz = Y 1Bjll2 < /s [ Y IIBs15-

jes jes
Suppose now that 3 satisfies

[Bsell21 < 3|Bsl|2.1-

Then
Y UBilh < VT Y 11Bjlla = VT Bsell2.
jgS JEs
<3VT||Bsllog <3VTs [Y B3

jes

Hence, by the univariate adaptive restricted eigenvalue condition,

Y B3 < (nxzsn%/n) /622053, St T5).

jes

But then also

1BsIZ, <s Y 16;1B < (nxzs||%/n)s/¢3dap<3,sfuu,Ts)

JES

= HXﬁ|‘;21,TST/¢'¢12dap(37SfullaTS)~

8.6.4 A multitask sparsity oracle inequality

Definition of the oracle Assume the multitask compatibility condition for the sets S
in .. The oracle B* is

= ar mln 42” Sﬁ
B* =arg {IIXﬁ | (S,;)}'

We define ¢, := ¢(Sg+), Ss := Sg+, 5 1= [Si/.

Theorem 8.4. Let
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T = {[va(B) < XollBll21/VT, ¥ B}.

Consider the multitask Lasso

B::argmin{ ZnYt X B3+ AlBlos VT }

Take A > 4Ay. Then on T

247L s
—10 :
oz o

Proof of Theorem 8.4. The Basic Inequality in this case is

IXB — 1157+ A1Bll2a /VT < va(B = B*) +IXB* 1|17 7+ AIIB |21/ VT,

soon .7, . .
41XB —1|5 7 +4A B2 /T
SANB =B ll2a /NT +4|XB* — 3 7 +4A[B* |12,/ VT,
and we can proceed as in the proof of Theorem 6.2. O

Asymptotics Suppose that log p/T = O(1) for T — 0. Then, with

4 4x+4logp 4x—+4logp

2 /

=—11

Ao n( + T - T ’

as given in Lemma 8.5, we see that we can take A = O(1//n), for n — . The
prediction error is then of order

OP(IIXB* )2+ ¢*)

In other words, up to a gain of a (log p)-factor, and modulo compatibility, the pre-
diction error for the multivariate model is about of the same order as the average
prediction error for T single Lasso’s.

To handle the set .77, one may insert Lemma 8.5, which relies on the assumption
of normally distributed errors. An alternative route is to apply Lemma 8.7 below.
We conclude that if the co-variables are bounded (say), it suffices to assume only
bounded fourth moments for the errors,

Lemma 8.7. Let {&;,: i=1,...,n,t =1,...,T} be independent random variables
with Eg;; = 0, IE&‘[%, =1, and Esft < ,uff for all i and t. Moreover; let {Xt(j) D j=
l,...,p, t =1,...,T} be given n-vectors satisfying (X,(j))T(X,(j>) =nforall jand
t. Define

Wi=e'XY/n, j=1,....p.t=1,...T
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and let W;:= (Wj1,....W; )T, j=1,...,p. Then for p > e3, we have
E wil3
[max |[Wllz
3/2 | I n 5 1/2Y 2
< T—l-\/T[Slog(Zp)] [ Z Z max (X ] .
nT t=1i=1 I=j= ’

The proof of Lemma 8.7 is given in Chapter 14 , Section 14.10.2.

8.7 The approximation condition for the smoothed group Lasso

Let us first recall the approximation condition for the additive model given in Sec-
tion 8.4.3:

Definition The approximation condition holds for the additive model if there exists
an M > 0 such that for all B, we have

’||fﬁ||n—||fﬁ’
<
Yillfip; |l +pena(B) ~

We will present illustrations of this condition for the cases considered, that is, for

the case of Sobolev smoothness and for diagonalized smoothness. In the first case,

we assume that the {Xi(j 1, is a random sample from some distribution Q, and we

show that the approximatlon condition is met with large probability when A = u =

n~ T, with n= A% . For the case of diagonalized smoothness, we formulate the
result dlrectly in terms of an approximation condition on the Gram matrix.

8.7.1 Sobolev smoothness

We will present the result from Meier et al. (2009).

Let {X; = (x\",... x")}1_ beiid. copies of X = (X(1),... X)) € [0,1]7. The
distribution of X is denoted by Q, and we let || - || be the L (Q)-norm. The marginal
distribution of X ) is denoted by O;,j=1,....p

Let v be Lebesgue measure on [0, 1], and define for £ : [0,1] = R,

() = [ 15" Pav= 115",
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where || - ||y denotes the L, (V)-norm.

Theorem 8.5. Assume that for all j, the densities dQ;/dv = q; exist and that for
some constant 1Mo > 0,

q; =15
Then there exists a constant Ay, depending only on m, and some constant Cy, 4 de-
pending only on m and the lower bound 1 for the marginal densities {q,}, such
that for A = . > Am(logp/n)%, we have for all t > 0,

112 = 11717 et )
sup 5 < Kng(t)A 2n | > 1—exp(—nA-t),

T (0 VIGIP+r2P ) )

where .
Km-,q(t) = CmA,q(] + \/27‘—‘,—),%;)’

Proof. This is shown in Meier et al. (2009), after translating the result in our nota-
tion. They use the parameters & and 7, which are

1
=1—-—.
o 2m
and
_2(l-a)
22—

Moreover, they replace what we call A by Az (i.e., their A is required to be
suitably larger than \/log p/n). O

The proof in Meier et al. (2009) is quite involved. We show in the next subsection
that for diagonalized smoothness, one gets qualitatively the same result, but with a
very simple proof.

8.7.2 Diagonalized smoothness

Recall that
2 =X"X/n.

We will approximate £ by a matrix X, which potentially is non-singular. For ex-
ample, when the rows of X are normalized versions of »n i.i.d. random vectors, the
matrix X could be the population variant of ~. Write

HZA: —EHOO = rl}é}(x|2j_’k—2j7k|.
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Take D := diag(d),d,...) and d, := ", with m > 1/2 given.

Lemma 8.8. Take Ty := Lnﬁﬂj +1Land A > /Ty/n, At > Ty/n. Then for all B
) 2
BTE — BTEB| <n|E - ||.2> (Z (||ﬁj|z+u||Dﬁ,-z>) .
=1

Proof of Lemma 8.8. It holds that

IB"EB —BTEBI < |I£ —Zl-lIBIIT,

and
1Bill1 < VTollBjll2 + To|DBjlI2/v/n,
Hence » »
1Bl =Y 1Bl < Z{\/ﬁllﬁjlerTo/\/ﬁllDﬂjIIz}
j=1 j=1
O
Problems

8.1. Consider the model
Y =XB%+¢,

where X" X/n = I, and the estimator

A

B— argn;;n{||Y—Xﬁ||%/n+zx||ﬁ||z).

Let Z:=X"Y/n.
(a) Show that
Hﬁ” _ 1Z]2 =2, |Z]>> A
‘o IZll> <2

(b) Show that when ||3]|2 #0,

Z

Pl

8.2. Consider the model
Y =XB"+e¢,

where X7 X /n = I. Write X = (X1, X»), where X is an n x py-matrix, k = 1,2. We
use the estimator
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Bimare min (1Y (XiBy-+ XaBo)B/n+ 22218113+ 231Ba1R )

B=(B1,B2)T
Define
xim AR IBR + A2 el
Show that when x # 0,
, 7, 4 7,
ﬁ1*1+/112/7ﬁ2 1+A«2/

where Z;, = X,{Y/ n, k = 1,2. Furthermore, then x is a solution of
(AN (+A3)° = AN Z1 3 (e +A3)7 + A3 || Za 5 (x + A7)

8.3. Here is an example that shows that two separate square roots can yield better
prediction error than a single square root. Consider two observations Y] and >,
where Y] = ﬁlo + &, [3]0 =1, is signal, and ¥, = & is only noise. We assume, for
i = 1,2, that |Y;| < o;, and let A; = o; be the tuning parameter. Moreover we assume
o5 = oy and o7 somewhat smaller than 1/4:

ol 430 < 1/16.

Taking two separate square roots. Suppose we let B be the (weighted) Lasso

~

Bimare min L0 - B (02— o)+ 2 B+ 20alfe

(a) Show that ﬁl =Y —A; and ﬁz = 0. The prediction error is thus

1B —=B°I3 = (&1 — )? < 4. (8.12)

Taking a single square root. Consider now the group-type Lasso
Bi=argmin{ (v~ B+ (1 )+ 2y /A26 + 4383 .

(b) Verify that with B; < 1/2 the penalized loss is at least

1
1/2—06)2> —
(1/ 61)_16,

whereas with f; = 1 and B, = 0 the penalized loss is at most

o +05+20) <
i+o5+ 16
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Conclude that §; > 1 /2. Therefore also x := 112312 + lzzﬁf =0, in fact

2> ol/a.
(c) Derive that v
pr = Tﬂif/x’
and ) Y,
b= o

(see also Problem 8.2).
(d) Show that for ¥, > 6, /2, the prediction error is at least
e o? [}
(1 +2c722/o'1)2 B (2+4622/C71)2 ~ 36

(8.13)

Conclusion in this example. Comparing (8.12) with (8.13), we see that when o is
small (07 < 144), the separate square roots penalty gives a much better prediction
error than the single square root penalty.

8.4. Consider the model
Yi=f0X)+&,1=1,.

Let I(f) be some measure for the roughness of the function f. Assume that [ is a
semi-norm and suppose that for a given 0 < o < 1,

|(&, )l < CIFIZI*(f)/Vn, ¥ f.
The penalty used in Section 8.4 is based on the inequalities
a®p' ¢ <Va*+b*<a+b,
which holds for all positive @ and b. An alternative penalty is motived by the in-
equality
a(xbl—(x < a2+b7,

where

This leads to the estimator

i +121Y(f)}

SM—‘

fi= argm1 {
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. . . . 2y
Prove an oracle inequality for this estimator, where one takes A > Cn~ 2 for a
constant C depending on 7.

8.5. Consider the estimator
N (1
Bi=argmind 1Y 0 )2+ 21811}
i=1

where 0 < y < 2 is given. Show that this problem can be numerically handled by
solving for each u > 0,

~ . 1 &
Bl i=awgmin 1305 £y 6+ 21815 .
i=1
and then solving for u
1y 2 201 p 2 e lcai]
ming o, L 05— (0 + eI e .
where ¢ and ¢, are appropriately chosen positive constants depending only on A

and 7.

8.6. In Theorem 8.1, we derived a bound for the ¢ /¢-estimation error

1B~ B2

of the group Lasso. Deduce a screening property from this (under beta-min condi-
tions). Formulate group Lasso variants of the (minimal adaptive) restricted eigen-
value conditions that ensure appropriate bounds for the ¢;-error. Similarly for the
Lasso for the time-varying coefficients model and for the Lasso for multitask learn-
ing. See Lounici et al. (2010).



Chapter 9

Non-convex loss functions and /-regularization

Abstract Much of the theory and computational algorithms for ¢;-penalized meth-
ods in the high-dimensional context has been developed for convex loss functions,
e.g., the squared error loss for linear models (Chapters 2 and 6) or the negative
log-likelihood in a generalized linear model (Chapters 3 and 6). However, there are
many models where the negative log-likelihood is a non-convex function. Impor-
tant examples include mixture models or linear mixed effects models which we de-
scribe in more details. Both of them address in a different way the issue of modeling
a grouping structure among the observations, a quite common feature in complex
situations. We discuss in this chapter how to deal with non-convex but smooth ¢;-
penalized likelihood problems. Regarding computation, we can typically find a local
optimum of the corresponding non-convex optimization problem only whereas the
theory is given for the estimator defined by a global optimum. Particularly in high-
dimensional problems, it is difficult to compute a global optimum and it would be
desirable to have some theoretical properties of estimators arising from “reasonable”
local optima. However, this is largely an unanswered problem.

9.1 Organization of the chapter

The chapter is built upon describing two models. Section 9.2 discusses finite mix-
tures of regressions models, which builds on results from Stédler et al. (2010), and
Section 9.3 focuses on linear mixed effects models, based on work from Schelldor-
fer et al. (2011). Within Section 9.2 (about mixture models), we discuss methodol-
ogy and computational issues while statistical theory is presented in Section 9.4.3.
Section 9.3 (about linear mixed models) includes methodology and computational
aspects and we outline some theory in Section 9.4.4. In Section 9.4, we present
general mathematical theory for ¢1-penalization with smooth, non-convex negative
log-likelihood functions which was developed by Stidler et al. (2010). The frame-
work encompasses mixture of regressions and linear mixed models as special cases.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 293
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 9,
© Springer-Verlag Berlin Heidelberg 2011
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9.2 Finite mixture of regressions model

Many applications deal with relating a response variable Y to a set of covariates
xW . xw through a regression-type model. The homogeneity assumption that
the regression coefficients are the same for all observations (X;,Y1),...,(X,,Y,)
can be inadequate. Parameters may change for different subgroups of observations.
Such heterogeneity can be modeled with mixture models. Especially with high-
dimensional data where the number of covariates p is much larger than sample
size n, the homogeneity assumption seems rather restrictive: a fraction of covariates
may exhibit a different influence on the response among subsets of observations,
i.e., among different sub-populations. Hence, addressing the issue of heterogene-
ity in high-dimensional data is an important need in many practical applications.
Besides methodology, computation and mathematical theory, we will illustrate on
real data that substantial prediction improvements are possible by incorporating a
heterogeneity structure to the model.

9.2.1 Finite mixture of Gaussian regressions model

We consider a continuous response Y and a p-dimensional covariate X € 2~ C R”.
Our primary focus is on the following mixture model involving Gaussian compo-
nents:

Y;|X; independent fori = 1,...,n,
Yi|Xi =x~ h,g(y\x)dy fori=1,...,n,

—xB, 2
he (ylx) = Zm exp(—%), ©.1)
(e73 r
é:(Blv--'7ﬁkacl7'"aGkvﬂla"'ank—l) GRkpXRI;OXH’
k—1

II={n;, n,>0forr=1,...,k—1and Zﬂr<l}.
r=1

Thereby, X; € Z° C R? are ﬁxed or random covariates, & denotes the (p+2)-k—1
free parameters and 7 = 1 — )~ 7. The model in (9.1) is a mixture of Gaussian
regressions, where the rth component has its individual vector of regressions coef-
ficients B, and error variances 2. We sometimes denote it by FMR (Finite Mixture
of Regressions) model.
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9.2.1.1 Reparametrized mixture of regressions model

We will prefer to work with a reparametrized version of model (9.1) whose pe-
nalized maximum likelihood estimator is scale-invariant and easier to compute. The
computational aspect will be discussed in greater detail in Sections 9.2.2.1 and 9.2.8.
Define new parameters

‘Pr:Br/GH pr:G;17 r=1,... .k

This yields a one-to-one mapping from & in (9.1) to a new parameter vector
= (01, O, P1,- -+, Pks T4 - ., 1) and the model (9.1) in reparametrized form
equals:

Y;|X; independent fori = 1,...,n,
Yl|Xl :prg(y|X)dy fori=1,...,n,

o(ylx) = Zm exp( (Pry—xcbr)z) 9.2)
6:(‘Pla"'7¢k7p17"'apkaﬂlw"ankfl)ERkPXRkOXH

k—1
O={n; 7, >0forr=1,....k—1land ) m <1}.

r=1

This is the main model we are analyzing and working with. We denote by 6° the
true parameter.

The log-likelihood function in this model equals:

Zlog (Z o

Since we want to deal with the p > n case, we have to regularize the maximum
likelihood estimator (MLE) in order to obtain reasonably accurate estimates. We
define below an /¢;-penalized MLE which is different from a naive ¢;-penalty for
the MLE in the non-transformed model (9.1). Furthermore, it is well known that the
(log-) likelihood function is generally unbounded. We will see in Section 9.2.2.2
that a suitable penalization will mitigate this problem.

= exp(~ (eri —Xiqx)z)) : (9.3)

9.2.2 /y-penalized maximum likelihood estimator

We first argue for the case of a (non-mixture) linear model why the reparametriza-
tion above in Section 9.2.1.1 is useful and quite natural.
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9.2.2.1 /;-penalization for reparametrized linear models

Consider a Gaussian linear model
Y=Xp+e, (94)

where € = ¢1,...,8,1i.d. ~.#(0,0?). The ¢;-penalized Lasso estimator is defined
as

B(A) = argming (|[Y ~XB|3/n+A||Bl|1)-

The Gaussian assumption in model (9.4) is not crucial but it is useful to make con-
nections to the likelihood framework. The Lasso estimator is equivalent to mini-
mizing the penalized negative log-likelihood n='¢(B;Y1,...,Y,) as a function of the
regression coefficients B and using the ¢;-penalty ||B|; = ij'=1 |B;|: equivalence
means here that we obtain the same estimator for a potentially different tuning pa-
rameter. But the standard Lasso estimator above does not provide an estimate of the
nuisance parameter G~.

In mixture models, it will be crucial to have a good estimator of 62 and the role
of the scaling with the variance parameter is much more important than in homo-
geneous regression models. Hence, it is important to take 62 into the definition
and optimization of the penalized maximum likelihood estimator. We could pro-
ceed with the following ¢;-regularized maximum likelihood estimator (see Section
3.2.1):

B(A),6%(1) = argming ;> (—n " 4(B,0%:V1,....Y,) + A[|B]1)
= argming > (log(0) +[[Y = XB|3/(2n0?) + A|[B[l1) . (9.5)
Note that we are penalizing only the B-parameter but the variance parameter 7 is
influenced indirectly by the amount of shrinkage 2.

There is a severe drawback of the estimator in (9.5). The optimization in (9.5) is
non-convex and hence, some of the major computational advantages of the Lasso
for high-dimensional problems is lost. We address this issue by using the penalty

> . (9.6)

This estimator is equivariant under scaling of the response. More precisely, consider
the transformation

term A @ leading to the following estimator:'

B(l),éz(l) = argming ;> <10g(0') +Y =XB|3/(2n6%) + A ||lzy||1

! The penalty in (9.6) is a natural choice since the regularization parameter A in the standard Lasso
should be chosen as const.c+/log(p)/n, see Lemma 6.2 which can be easily adapted to cover
general error variance 7.
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Y =bY; ﬁ':bﬁ; o' =bo (b>0)

which leaves model (9.4) invariant. The estimator in (9.6) based on the transformed
data {(X;,Y/); i=1,...,n} then yields §’ = b} where the latter estimate 3 is based
on non-transformed data {(X;,Y;); i = 1,...,n}. Furthermore, the estimator in (9.6)
penalizes the ¢'-norm of the coefficients and small variances ¢ simultaneously.
Most importantly, we can reparametrize to achieve convexity of the optimization
problem:

¢j=PBj/o, p=0c".

This then yields the following estimator which is invariant under scaling and whose
computation involves convex optimization (Problem 9.1):

R R ) 1
6(1).p(4) = argmin (—log<p> + 2n||pY—X¢||%+M|¢||1) RNCYS
P

The Karush-Kuhn-Tucker conditions (KKT) imply (Problem 9.2): every solution
(¢,p) of (9.7) satisfies,

|=XT(pY—X§)/n| <A if  §;=0(j=1,....p),

—pXI (Y —X@) +nAsign(9;) =0 if ¢, #0(j=1,...,p),
YTX$ 4/ (YIX$)2 +4]Y|Bn

2|v |3

7 9.8)

fj:

where X ; denotes the n x 1 vector (X, X\/))T.

The estimator for 62 is then 62 = p~2. We remark that for the case of a (non-

mixture) linear model, Sun and Zhang (2010) propose an estimator for the error

variance o2 which is less biased than 62.

9.2.2.2 /;-penalized MLE for mixture of Gaussian regressions

Consider the mixture of Gaussian regressions model in (9.2), i.e., the FMR model.

Define the following estimator for the unknown parameter = (@1, ..., 9, P1,- - -, Pks
7171,...,7[1{,1)1
6(1) = argmin —n_lépen_l(e), 9.9
[23¢) ’

with
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= exp (—;(prn—mr)Z))

Y ol ©.10)
r=1

k
—nilﬁpen 2(0)= -1 Zlog (Z

0 =R xRE x I, 9.11)

where IT={m; m, >0forr=1,...,k—1 and Z" ]m<1}.

One can also use a modified penalty term of the form

k
AY 7ol (v=>0), 9.12)
r=1

fore.g. y=1/2 or y= 1, and we then denote the negative penalized log-likelihood

by —n’lél()g’l. The choice y = 0 yields the proposal in (9.10). Using y # 0 is more
appropriate for unbalanced cases where the true probabilities for the mixture com-
ponents ¥ differ substantially. We sometimes refer to the estimator in (9.9) as the
FMRLasso. We note that it involves optimization of a non-convex negative log-

likelihood, due to the appearance of several mixture components.

The penalty function in (9.10) involves the £;-norm of the component specific ratio’s
o = B ~ and hence small variances are penalized. As shown next (for the case with
Y= 0) the penalized likelihood stays finite when o, — O: this is in sharp contrast
to the unpenalized MLE where the likelihood tends to infinity if o, — 0, see for

example McLachlan and Peel (2000).

Proposition 9.1. Assume thatY; # 0 for alli = 1,. .. n. Then the penalized negative
likelihood —n’lﬂpen’;t (8) in (9.10) with A > 0 is bounded from below for all values
6 €O from(9.11).

Proof. We restrict ourselves to a two class mixture with k = 2. Consider the function
u(&), & asin (9.1), defined as

“(‘g) = eXp(ﬁpen(é))

—(-X;81)* —(=X;B)*
n T —F 1—7m) —=2— A lBlly A Bl
o H e 207 + ( )e 207
i1 (o3 (e3)]

e " % e 2 (913
We will show that u(&) is bounded from above as a function of &€ = (o7, 0, B1, B2, )
€ E =R, xR x (0,1). Then clearly —n~ '/, ; () is bounded from below on

= (p1,p2, 01,02, ) € @ =R () x R¥ x (0,1).

Before giving a rigorous proof, we remark that the critical point for unboundedness
is if we choose for an arbitrary sample pointi € 1,...,na ;" such that¥; — X;3; =0
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and letting 6; — 0. Without the penalty term exp(— ’1 B¢ o I ) in (9.13) the function
would tend to infinity as o; — 0. But as ¥; # 0 for all i€ 1 ,n, By cannot be zero

( k Hﬁ] [l )

and as a consequence, exp forces u(&) to tend to 0 as o — 0.

We give now a more formal proof for boundedness of u(&). Choose a small 0 <
€1 < min Yi2 and & > 0. Since ¥; # 0, i = 1...n, there exists a small constant m > 0
such that

0<minY? —g < (Y;i—X;B1)? (9.14)

holds for all i =1...n as long as || 81 ]| < m, and
0 <minY? —g < (Y;i—X;B)? (9.15)

holds for all i = 1...n as long as ||Ba||; < m. Furthermore, there exists a small
constant § > 0 such that

—e I <& and —e "9 < g (9.16)

hold for all 0 < 07 < 8, and

(min)’iz—el)
l - 202 1 i
—e 2 <& and —e "2 <g 9.17)
(o) (¢3)

hold for all 0 < 0, < 0.

Define the set B = {(01,0%,B1,B:,7) € E; 6 < 61,0,}. Now u() is trivially
bounded on B. From the construction of B and equations (9.14)-(9.17) we easily
see that u(&) is also bounded on B¢ and therefore bounded on E. O

9.2.3 Properties of the (-penalized maximum likelihood estimator

As with the standard Lasso, due to the ¢;-penalty, the estimator in (9.9) is shrinking
some of the coefficients of ¢y, ..., ¢, exactly to zero, depending on the magnitude
of the regularization parameter A. Thus, we can do variable selection as follows.
Denote by

S=8(A)={(rj): ¢jA) #£0, r=1,..k j=1,....p}.  (9.18)
The set § denotes the collection of non-zero estimated, i.e., selected, regression

coefficients among the k mixture components.

We present in Section 9.4.3 an oracle inequality for the estimator in (9.9) describing
prediction optimality and a result on estimating the high-dimensional regression
parameters in terms of ||¢ — ¢°||;, where ¢° denotes the true parameter. From the
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latter, a variable screening result can be derived exactly along the lines as in Section
2.5 in Chapter 2 (e.g. formula (2.13)), assuming sufficiently large (in absolute value)
non-zero coefficients (the analogue of the beta-min condition in formula (2.23), see
also Sections 7.4 and 7.8.5), saying that with high probability

SOSo={(rj): ¢;#0, r=1,...k j=1,....p} 9.19)

9.2.4 Selection of the tuning parameters

The regularization parameters to be selected are the number of mixture components
k and the penalty parameter A. In addition, we may also want to select the type of
the penalty function, i.e., selection of y in (9.12) among a few different candidate
values.

We can use a cross-validation scheme for tuning parameter selection minimizing the
cross-validated negative log-likelihood. Alternatively, a simple and computationally
very convenient approach is to use the BIC criterion which minimizes

BIC = —2/(6,")) +log(n)df, (9.20)

(1)

over a grid of candidate values for k, A and maybe also 7. Here, é{k denotes the esti-
mator in (9.9) using the parameters A, k, yin (9.10) or (9.12), respectively, and —/(-)
is the negative log-likelihood. Furthermore, df = k+ (k— 1) +X7_, ¥'5_, 1(9,; #0)
are the number of non-zero estimated parameters. A motivation for defining the
degrees of freedom in this way is described in Section 2.11 from Chapter 2 for
the ordinary Lasso in linear models, see also (2.35). However, there is as yet no
rigorous theoretical argument justifying the use of the BIC criterion above for the
{1 -penalized MLE estimator in high-dimensional mixture models.

Regarding the grid of candidate values for A, we consider 0 < Agrig,1 < ... < Agrid,g =
Amax» Where A,y is given by

xTy

A il el
v vallY[}2

= , 9.21)
j=l,...p

and X denotes the n x 1 vector (Xl(j), ... J(,Ej))r. At Amax, all coefficients (13/-, (j=
1,...,p) of the one-component model are exactly zero. This fact easily follows from
(9.8).



9.2 Finite mixture of regressions model 301

9.2.5 Adaptive (-penalization

An adaptive Lasso as described in Section 2.8 in Chapter 2 (see also Chapter 7) can
also be used here to effectively address some bias problems of the (one-stage) Lasso-
type estimator. If the underlying truth is very sparse, we expect a better variable
selection and prediction accuracy with the adaptive procedure.

The two-stage adaptive /;-penalized estimator for a mixture of Gaussian regres-
sions is defined as follows. Consider an initial estimate éinit, for example from the
estimator in (9.9). The adaptive criterion to be minimized involves a re-weighted
{1 -penalty term:

n k 1
Y (9)= 'Y 1o T, Pr ex ( WY — X0, 2>
n adapt( ) n ; g r=Zi /*27_[ p 2(P (P )

k 4
+/'LZ7'C,YZWW|¢W-|,
r=1 j=1
1
Wrj = =~ 9:(plv"'7pk7¢l7'"a¢ka7r17"'77tk—l); (922)
|¢init;r,j|

where y € {0,1/2,1}. The estimator is then defined as

A : 1407
eadapt;l - aregergln -n Eadapt(e)’

with © is as in (9.11). We refer to this estimator as the FMRAdaptLasso.

9.2.6 Riboflavin production with bacillus subtilis

We apply the Lasso-type estimator for FMR models to a data set about riboflavin
(vitamin B») production by bacillus subtilis. The data has been kindly provided by
DSM (Switzerland). The real-valued response variable is the logarithm of the ri-
boflavin production rate and there are p = 4088 covariates (genes) measuring the
logarithm of the expression level of 4088 genes. These measurements are from
n = 146 samples of genetically engineered mutants of bacillus subtilis. The popula-
tion seems to be rather heterogeneous as there are different strains of bacillus subtilis
which are cultured under different fermentation conditions. We do not know the dif-
ferent homogeneous subgroups. For this reason, an FMR model with more than one
component might be more appropriate than a single linear regression model.

We compute the FMRLasso estimator from (9.9) for k = 1,...,5 components. To
keep the computational effort reasonable we use only the 100 covariates (genes) ex-
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Fig. 9.1 Riboflavin production data. Cross-validated negative log-likelihood loss (CV Error) for
the FMRLasso estimator when varying over different numbers of components. The figure is taken
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Fig. 9.2 Riboflavin productlon data. Coefﬁments of the twenty most 1mp0rtant genes ordered

according to Zr:l | ﬁ,‘, j|, for the prediction optimal model with three components. The figure is
taken from Stddler et al. (2010).

hibiting the highest empirical variances.> We choose the tuning parameter A by 10-
fold cross-validation (using the log-likelihood loss). As a result we get five different
estimators which we compare according to their cross-validated log-likelihood loss
(CV Error). These numbers are plotted in Figure 9.1. The estimator with three com-
ponents performs clearly best, resulting in a 17% improvement in prediction over
a (non-mixture) linear model, and it selects 51 variables (genes). In Figure 9.2 the
coefficients of the twenty most important genes, ordered according to Zle |Br.l,

2 We first select the 100 covariates having largest empirical variances. We then normalize these
100 variables to mean zero and empirical variance one.
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are shown (we back-transform 3,7 = q?,,.,- /Pr). From the important variables, only
variable (gene) 83 exhibits an opposite sign of the estimated regression coefficients
among the three different mixture components. However, it happens that some co-
variates (genes) exhibit a strong effect in one or two mixture components but none
in the remaining other components. Finally, for comparison, the one-component
(non-mixture) model selects 26 genes where 24 of them are also selected in the
three-component model.

9.2.7 Simulated example

We consider a scenario, with successively growing number of covariates where we
compare the performance of the unpenalized MLE (Flexmix, according to the name
of the R-package) with the estimators from Section 9.2.2.2 (FMRLasso) and Section
9.2.5 (FMRAdapt). For the two latter methods, we use the penalty function in (9.12)
with y= 1.

The simulation is from a Gaussian FMR model as in (9.2): the coefficients 7., B, 0,
are as follows,

Bi=(3,3,3,3,3,0,...,0), pp=(—1,-1,-1,—1,-1,0,...,0),
c1=0,=2, m=m=1/2.

The covariate X is generated from a multivariate normal distribution with mean 0
and covariance matrix /. This results in a signal to noise ratio of 12.1. Finally, we use
sample size n = 100 and vary p from 5 to 125 by adding up to 120 noise covariates.

We use training-, validation- and test data of equal size n. The estimators are com-
puted on the training data, with the tuning parameter A selected by minimizing
twice the negative log-likelihood (log-likelihood loss) on the validation data. As
performance measure, the predictive log-likelihood loss (twice the negative log-
likelihood) of the estimated model is computed on the test data.

Regarding variable selection, we count a covariable X /) as selected if [3‘,7 ; 7 0 for at
least one r € {1,...,k}. To assess the performance of FMRLasso on recovering the
sparsity structure, we report the number of truly selected covariates (True Positives)
and falsely selected covariates (False Positives).

The boxplots in Figures 9.3 of the predictive log-likelihood loss (Error), the True
Positives (TP) and the False Positives (FP) over 100 simulation runs summarize the
results for the different models. We see from this figure that the MLE performs very
badly when adding noise covariates. On the other hand, the penalized estimators re-
main stable. There is also a substantial gain of the FMRAdaptLasso over FMRLasso
in terms of log-likelihood loss and false positives.
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Fig. 9.3 Simulation when varying the dimension p (denoted by p). Top: negative log-likelihood
loss (Error) for MLE, FMRLasso, FMRAdaptLasso. Bottom: False Positives (¥P) and True Posi-
tives (TP) for FMRLasso and FMRAdapt. The figure is taken from Stadler et al. (2010).

9.2.8 Numerical optimization

We present here an EM and generalized EM (GEM) algorithm for optimizing the
criterion in (9.10). The GEM modification is used for dealing with the penalty func-
tion in (9.12) with ¥ # 0. In Section 9.2.9.1 we will discuss numerical convergence
properties of the algorithm.

9.2.9 GEM algorithm for optimization

Maximization of the log-likelihood of a mixture density is often done using the
traditional EM algorithm of Dempster et al. (1977). We closely follow Stidler et al.
(2010) who describe an efficient adaptation for high-dimensional FMR models.

Consider the complete log-likelihood:

£:.(6;Y,A) Z ZA,,log (re 5(""}]"}@’)2) + A rlog(m,).

i=lr=
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Here, (A;1,...,Aix) (i=1,...,n) are i.i.d unobserved multinomial variables show-
ing the component-membership of the ith observation in the FMR model: A; , = 1 if
observation i belongs to component r and A; , = 0 otherwise. The expected complete
(scaled) negative log-likelihood is then:

0(616") = —n"'E[((6:Y,4)]Y.6],

and the expected complete penalized negative log-likelihood (scaled) is
k
Open(0]6') = Q(0]6") + 4 Y 7|91 1.
r=1

The EM-algorithm works by iterating between the E- and M-step. Denote the pa-
rameter value at iteration m by 0" (m=0,1 ...), where 6% is a vector of starting
values.

E-Step: Compute Q(6|6/")) or equivalently
[my. .M
= ™ ol =3 (oY= X0 ?
[m]

Vir :EA[,Y,G[m]
hr = ElAi vk 7 gl b ol i-xigl"

(see also the generalized M-step below how the ¥ ,’s are used).

Generalized M-Step: Improve Qpen(0]61) w.rt. 6 € ©.

a) Improvement with respect to Tt:
Fix ¢ at the present value ¢ ],

If v = 0 in the penalty function in (9.12):

n <
m+1] _ Zi=1 i
n

T ) %:(%,17“'7%,/()7-

which is an explicit simple up-date minimizing Qpen(9|9[m]) with respect to T

while keeping the other parameters p and ¢ fixed.
If y # 0, improve

n k
LY i log(m) + A Znynqs/'”u 9.23)
i=1r=1
with respect to the probability simplex

k
{m; m >0forr=1,...,kand Zn,:l}.



306 9 Non-convex loss functions and ¢;-regularization

Denote by gl = Lt -1 1 which is a feasible point of the simplex. We can update
T as

gl gl gl (1] _ gl

where 11" € (0,1]. In practice 11 is chosen to be the largest value in the grid
{0"; u=0,1,2,...} (0 < & < 1) such that (9.23) is decreased. A typical choice
is 6 =0.1.

b) Coordinate descent improvement with respect to ¢ and p:

A simple calculation shows (Problem 9.3), that the M-Step decouples for each
component into k distinct optimization problems of the form

1 - nA /|
_IOg(pr)‘FﬁHPrY_X(PrHZ‘FYT( nH) l0r1[1, r=1,....,k (9.24)
r r
with

Ai,rv (YUXI) =V ?i,r(Yi;Xi% r= 17"'7k'

™

ny =

i=1

We denote by Y and X the vector or matrix including all sample indices i =
1,...,n, respectively. The expression in (9.24) is of the same form as (9.7): in
particular, it is convex in (p,,@.1,...,9:,). Instead of fully optimizing (9.24)
we only minimize with respect to each of the coordinates, holding the other co-
ordinates at their current value. Closed-form coordinate updates can easily be
computed for each component » (r = 1,...,k) using (9.8):

T & U V(TR 4V P,
’ 2V |

0 if |5, <nA (7 ['”“])Y,

¢[m+1] (nl (mLerl])y_Sj) /”le|2 if S; > nA ( [erl])Y7
. (M (nr[’”“])ﬁsj) JIK 20 S) < —nA (nr[erl])Y,

where S is defined as

= —p"IXIX+ Y ol TIXTX 4+ Y 0 XX,

s<j s>

andj=1,...,p
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Because we only improve Qpen(0]6") instead of a full minimization, see M-step
a) and b), this is a generalized EM (GEM) algorithm. We call it the block coordinate
descent generalized EM algorithm (BCD-GEM); the word block refers to the fact
that we are up-dating all components of 7 at once. Its numerical properties are
discussed next.

9.2.9.1 Numerical Convergence of the BCD-GEM algorithm

We are addressing here convergence properties of the BCD-GEM algorithm de-
scribed in Section 9.2.9 for the case with ¥ = 0. A detailed account of the conver-
gence properties of the EM algorithm in a general setting has been given by Wu
(1983). Under regularity conditions including differentiability and continuity of the
objective function, he proves convergence to stationary points for the EM algorithm.
For the GEM algorithm, similar statements are true under conditions which are of-
ten hard to verify. We are a bit less ambitious and ask only whether a cluster point of
an iterative algorithm equals a stationary point of the objective function (see Propo-
sition 9.2 below), that is, we do not address the issue whether the algorithm actually
converges (the latter can be checked on a given example up to numerical errors).

As a GEM algorithm, the BCD-GEM algorithm has the descent property which
means, that the criterion function is reduced in each iteration,

_nilgpen,l(e[nH»l]) < _nilgpen,k(e[m])' (9.25)

Since —n_lﬁpeml(e) is bounded from below as discussed in Proposition 9.1, the
following result holds. For the BCD-GEM algorithm, —n”zpenyl(e[m}) decreases
monotonically to some value ¢ > —eo,

Furthermore, we show here convergence to a stationary point for the convex penalty
function in (9.10) (which is (9.12) with y = 0).

Proposition 9.2. Consider the BCD-GEM algorithm for the objective function in
(9.10) (i.e. Y =0) and denote by 01" the parameter vector after m iterations. Then,
every cluster point of the sequence {é[m] ;m=0,1,2,...} is a stationary point of the
objective function in (9.10).

A proof is given in the next Section 9.2.10. It uses the crucial facts that Qpen(6(6”)
is a convex function in 6 and that it is strictly convex in each coordinate of 6.
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9.2.10 Proof of Proposition 9.2

First, we give a definition of a stationary point for non-differentiable functions (see
also Tseng (2001)). Let u be a function defined on a open set U C RP: x € U is

called a stationary point if u’(x;d) = limg o w >0 VdeRP.

The density of the complete data is given by

AiJ’
Y A|9 HH (\/278 %(PrY:‘X:“Pr)z) ,

i=lr=

whereas the density of the observed data is given by

Sobs Y‘e Hzﬂr e é (prYi X¢r)

i=1lr=

0= (¢1,...7¢k7p1,...,pk771'1,...,7'£k,|) € 0.

Furthermore, the conditional density of the complete data given the observed data
is given by g(Y,A|Y,0) = f.(Y,A|0)/ fops(Y|6). Then, the penalized negative log-
likelihood fulfills the equation

k
Vpen(8) = —n 100 (6) = —n " log fus(Y0) + 2 Y (1941l

r=1

Open(016") —H(6]6'), (9.26)

where Qpen(00') = —n'E[log f.(Y,A[0)|Y,8'] + A XX_, ||¢,]|1 (compare Section
9.2.9)and H(0|0') = —n~'E[logg(Y,Al|Y,0)|Y,0'].

By Jensen’s inequality we get the following well-known relationship:
H(6|0')>H(0'|0') V 0€0O. (9.27)

We leave the derivation of (9.27) as Problem 9.4. We note that Qpe,(6]6’) and
H(6|6’) are continuous functions in 6 and 6’. If we think of them as functions
in 6 with fixed 8" we write also Qpen ¢/ (0) and Hgr (6). Furthermore Qpep, o/ (0) is a
convex function in 8 and strictly convex in each coordinate of 6.

We are now ready to start with the main parts of the proof which is inspired by
Bertsekas (1995). Let 6! be the sequence generated by the BCD-GEM algorithm;
note that we drop the hat-notation in this proof. We need to show for a converging
subsequence 0"l 5HcOthatfisa stationary point of Vpe, (). Taking directional
derivatives in equation (9.26) yields

Vien(B:d) = QL 5(8:d) — VHg () d.
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Note that VHg (0) = 0 as Hp (x)_ls minimized for x = 6 (equation (9.27)). Therefore
it remains to show that Q; 0;d) > 0 for all directions d. Let

ST N L )

where D = dim(0) = (k+ 1)p + k — 1. Using the definition of the algorithm we
have:

Qpen,e[m] (e[m]) 2 Qpen,e['”] (Z[lm]) e Qpen,e[m] (Zgnll) 2 Qpen,e['"] (6 1] ) (9.28)
Additionally, from the properties of GEM (equation (9.26) and (9.27)) we have:
Voen(0%) > vioen (611) > .. > vpen (01 > vien (811 (9.29)

Equation (9.29) and the converging subsequence imply that the sequence
{Vpen(81]); m = 0,1,2,...} converges to Vyen(8). Thus we have:

m

0= pene (9 ) pen olm ](e[erl])
= Vpen( ]) Voe ( [m+l]) +H (9[ ]) _Hg[m] (9[1n+1])
< Vpen (6"") = Vpen (67 11), (9.30)

where we use in the last inequality that Hyju) TCL - Heyj) (6 ol +11y <0 due to (9.27).
The right-hand side converges to Vpen( ) vpen( = 0 and we conclude that the

sequence {Q i (0)) — QpenAe[m](G[’”“]), m=0,1,2,...} converges to zero.
+1] _

en9

We now show that {Gl[mj Bl[mj ]} converges to zero for the subsequence m; (j —

o). Assume the contrary, in particular that {z[]mj I 0 [”’j]} does not converge to 0. Let

§lmil = ||Z[1m" I glm) |l2. Without loss of generality (by restricting to a subsequence)
we may assume that there exists some & > 0 such that 8lmil > § for all j. Let
[mj] z[mj]fe[mf] [m;] . [m;]
7 = "——— where s, " differs from zero only for the first component. As s, ’

5[mj]
]

belongs to a compact set (||s[1mﬂ |2 = 1) we may assume that slm" converges to j.
Let us fix some € € [0, 1]. Notice that 0 < £ < "], Therefore, /"] +£5s[ 7 lies

on the segment joining 6! and z[ d

[m)]
Qpen,e N

from 9l™mj] along the first coordinate, we obtain

, and belongs to @, because O is convex. As

m;)(-) is convex and z; " minimizes this function over all values that differ

g (81 8l My < 0 (ol g8l

pen,@!"J

Qpen,e[mj] (Z[lm/]) = Q
<0

pen, 9

g (67 9.31)

We conclude, using (9.31) in the second and (9.28) in the last inequality,
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0<0 (0" =0 (6l +eds™)

— ~’pen,0 pen,0
) (01)) — 0

S Q [m/] (Z[lmj]) S Q [m/](e[m]]> _Q ](9[m1+1])

pen,6 pen,6 pen,6 pen,e[m-/
Using (9.30) and continuity of Qpen «(y) in both arguments x and y we conclude by

taking the limit j — oo:

Qpen5(0+8851) = 0pen 5(0) Ve [0, 1].

(x1,05,...,0p) as a func-
tion of the first coordinate. Thus, this contradiction establishes that z[lmj | converges
to 6.

Since 857 # 0, this contradicts the strict convexity of Qpen,d

From the definition of the algorithm we have:
Open (21" 101)) < Qpen (1,6, 05 O]y v

By continuity and taking the limit j — o we then obtain:

Coen5(0) < Qpeng(x1,62,...,6p)  Vai.

Repeating the argument for the other coordinates we conclude that 6 is a coordi-
natewise minimum. Therefore, following Tseng (2001), 6 is easily seen to be a
stationary point of Q. 5(.), in particular QID en.d (8;d) > 0 for all directions d (see
the definition of a stationary point at the beginning of the proof). O

9.3 Linear mixed effects models

Unlike for mixture models as in Section 9.2, a grouping structure among observa-
tions may be known. Such a structure can then be incorporated using mixed effects
models which extend linear models by including random effects in addition to fixed
effects. The maximum likelihood approach leads to a problem with a non-convex
loss function. From an algorithmic point of view, we develop a coordinate gradient
descent method and show its numerical convergence to a stationary point. Regarding
statistical properties, oracle results can be established using the more general theory
in Section 9.4. Besides methodology and theory, we will also empirically illustrate
that there may be a striking improvement if we take the cluster or grouping structure
in the data into account.
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9.3.1 The model and (|-penalized estimation

We assume N different groups with corresponding grouping index i = 1,...,N.
There are n; observations within the ith group with corresponding index j =
1,...,n;. Denote by Ny = Zfil n; the total number of observations. For each ob-
servation, we observe a univariate response variable Y;;, a p-dimensional fixed ef-
fects covariate X;; and a g-dimensional random effects covariate Z;;. We consider
the following model:

)/}j:Xijﬁ+Zijbi+gij7 i=1,....N, ]: 17...,I’l,'. (932)

assuming that &; ~ .4 (0,02) independent for i = 1,...,N and j = 1,...,n;, b; ~
A4(0,I') independent for i = 1,...,N and independent of €;1,..., €vy,. Here we
denote by B € R? the vector of the unknown fixed effects regression coefficients
and by b; € R? (i = 1,...,N) the random effects regression coefficients. All obser-
vations have the coefficient vector § in common whereas the value of b; depends on
the group that the observation belongs to. In other words, for each group there are
group-specific deviations b; from the overall effects 3. We assume in the sequel that
the design variables X;; and Z;; are deterministic, i.e., fixed design. Furthermore, we
assume that I = I'; is a covariance matrix where 7 is a set of parameters of dimen-
sion ¢* such that I" is positive definite. Possible structures for I" include a multiple
of the identity, I' = 721 with ¢* = 1, a diagonal matrix I" = diag(7?,.. .,175) with
q" = g or a general positive definite matrix with ¢* = g(g+1)/2.

We re-write model (9.32) using the standard notation in mixed effects models (Pin-
heiro and Bates, 2000):

Y;=XiB+Zbi+¢, i=1,...,N, (9.33)

where Y; is an n; x 1 vector of responses of the ith group, X; is an n; x p fixed
effects design matrix, Z; an n; X g random effects design matrix and & an n; x 1
error vector. We allow that the number p of fixed effects regression coefficients may
be much larger than the total number of observations, i.e., p > Nr. Conceptually,
the number ¢ of random effects may be very large if the covariance matrix I' = I';
is of low dimension ¢*. However, in the sequel we will restrict ourselves to the
case where a covariate is modeled with a random effect only if it allows for a fixed
effect in the model as well, that is Z; C X;. The aim is to estimate the fixed effects
parameter vector f3, the random effects b; and the covariance parameters ¢ and I

From model (9.33) we derive that Yq,..., Yy are independent with distributions,

Y[ ~ «/%z,v(Xiﬁ7‘/i(Ta 0-2))7
Vi(r, 0'2) = Z,»FTZI-T + Gz]nixni~

Hence, the negative log-likelihood function of Y1,..., Yy is given by (Problem 9.5)
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—((B,1,0%)

N\*—‘

i=1

i (n log(27) + logdet(V;) + (Yi—Xiﬁ)T‘/il(Yi—Xiﬁ)>-

(9.34)

9.3.2 The Lasso in linear mixed effects models

Due to the possibly large number of covariates, i.e., the p > Nr setting, we regular-
ize by ¢;-penalization for the fixed regression coefficients and thus achieve a sparse
solution with respect to the fixed effects. Consider the objective function

1

([376) 5

\\Mz

<10gdet() (Y =X;B)" V(Y X,ﬁ))wtﬁlll,

(9.35)
where A > 0 is the regularization parameter and V; = V;(7). Consequently, we esti-
mate the fixed regression coefficient vector 3 and the covariance parameters T and
o2 by
B(2),#*(1).6*(2) = argmin Q;(B.7.0%), (9.36)

B.re#* 62

where 27 = {t € R?'; I} positive definite}. We refer to the estimator as the LMM-
Lasso (Linear Mixed effects Model Lasso). For fixed covariance parameters 7, o2,
the minimization with respect to f3 is a convex optimization problem. However, over
all parameters, we have a non-convex objective function and hence, we have to deal
with a non-convex problem, see Problem 9.5.

9.3.3 Estimation of the random effects coefficients

The random regression coefficients b; (i = 1,...,N) can be estimated using the max-
imum a-posteriori (MAP) principle. Denoting by p(-) the density of the correspond-
ing Gaussian random variable, we consider

b} = argmax p(b;|Y1,...,Yy:B,7,0%) = argmax p(b;|Y;: B, 7, 062)
Yilbi;B,07) - p(bi
 argman PV25.0) (0110
b; p(Yi|ﬁ7T70- )

. 1 _
= argmm{o_zYi —X,‘ﬁ _ZibiH% +b1Tl—:; 1b,’}~

i
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Thus, we obtain
b= (2'Z:+0°I;") ' 27r;, 1= (Yi—XB)

which corresponds to a generalized Ridge Regression. Since the true values of 3, T
and o2 are unknown, the b;’s are estimated by

~ “ _ —1 ~
bi=(2]z;+6°T; ") Zlt;,

where t; = (Y; — X,ﬁ’), using the estimates from (9.36).

9.3.4 Selection of the regularization parameter

The estimation method requires to choose a regularization parameter A. We can
either use a cross-validation scheme for evaluating the out-of-sample negative log-
likelihood or employ the Bayesian Information Criterion (BIC) defined by

—20(B,%,6%) +log Nrdf, 9.37)

where df = |[{}; Bj #0}|+¢* + 1 is the number of nonzero estimated parameters.
The use of df as a measure of the degrees of freedom is motivated by the results
described in Section 2.11 in Chapter 2 for the ordinary Lasso in linear models. A
more rigorous theoretical argument justifying the use of the BIC criterion for the /-
penalized MLE in high-dimensional linear mixed effects models is missing: the BIC
has been empirically found to perform reasonably well (Schelldorfer et al., 2011).

9.3.5 Properties of the Lasso in linear mixed effects models

Like the Lasso in linear models, the estimator in (9.36) is shrinking some of the
coefficients f,..., B, exactly to zero, depending on the value of the regularization
parameter A. Therefore, we can do variable selection (for fixed effects) as discussed
before. Consider

$=8(A)={j; Bi(A) #0, j=1,...,p}

as an estimator of the true underlying active set Sp = {J; ﬁjo #0, j=1,...,p},
where B° denotes the true parameter vector.
We discuss in Section 9.4.4 an oracle inequality for the estimator in (9.36). It implies

optimality of the estimator for prediction and an ¢;-estimation error bound for || —
BY||1. As usual, we can then derive a result for variable screening (see Section 2.5,
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Corollary 7.6 and Section 7.8.5): with high probability, § D Sp, assuming a beta-min
condition ensuring sufficiently large (in absolute value) non-zero coefficients.

9.3.6 Adaptive (1-penalized maximum likelihood estimator

As we have discussed in Section 2.8 in Chapter 2 for linear models, the adaptive
Lasso is an effective way to address the bias problems of the Lasso. The adaptive
{1 -penalized maximum likelihood estimator uses the following objective function
instead of (9.35):

Qadapt,l (ﬂv T, 62)

N
= %Z <10gdet(Vi)+(Yi—Xil3)TV;_1(Yi—Xil3)> +4 fWHﬁk\,
=1 k=1

where the weights wy,...,w), are derived from an initial estimation in (9.36) with
wi = 1/|Binitk(A)| for k=1,..., p. The adaptive estimator is then defined by:

ﬁadapt(l)’ %adapt(x)’ 6-azdapt(a’) = argmin Qadapt,l (ﬁy T, 62)7 (9.38)

B.re#d" 62

where 29 is as in (9.36). We indicate at the end of Section 9.4.4 that an oracle
inequality applies to the adaptive estimator, implying optimality for prediction and
results on estimation error and variable screening.

9.3.7 Computational algorithm

The estimation of the fixed regression parameters and the covariance parameters
can be computed using a Coordinate Gradient Descent (CGD) algorithm. Such an
algorithm has been described in Section 4.7.2 in Chapter 4 for the group Lasso
with non-quadratic loss functions (where we used a block CGD algorithm whereas
here, we do not have to deal with blocks). The main idea is to cycle through the
coordinates and minimize the objective function with respect to only one coordinate
while keeping the other parameters fixed, i.e., a Gauss-Seidel algorithm.

For computation (and also statistical theory), it is more convenient to work with
a reparametrization. Define the parameter 87 = (87,77 log(c)) = (BT, n7) €
R+ where nT = (77 ,log(o)) := (N1, M2). Consider the functions

p

pen(B) =Bl =} 1Bl.

k=1
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N

2(8)= (1 Y (togde(v) + (¥ XYV (v X)),

i=1
Vi = Zily, ZT +exp(12)
01(6) = ¢(6) +pen(B).

The estimator in (9.36) is then re-written as

6(A) = argminQ, (0), (9.39)
0

where the optimization is with respect to 6 = (87, n{,nJ) with I, positive defi-
nite.

In each step, we approximate Q) (.) by a strictly convex quadratic function. Then
we calculate a descent direction and we employ an inexact line search to ensure a
decrease in the objective function. The ordinary Lasso in a generalized linear model
has only regression coefficients to cycle through. This is in contrast to the prob-
lem here involving two kinds of parameters: fixed effects regression and covariance
parameters.

Let 1(6) be the Fisher information of the model and e; be the jth unit vector. The
computational algorithm is summarized in Algorithm 5, and we turn now to some

Algorithm 5 Coordinate Gradient Descent (CGD) Algorithm

1: Let 8 ¢ RP+4"+1 be an initial parameter vector. Set m = 0.

2: repeat

3:  Increase m by one: m < m+1.
Denote by . the index cycling through the coordinates {L,...,p,p+1,...,p+qg"+1}:
i — ZIm=11 4 | mod (p+4q*+1). Abbreviate by j = M the value of .7,

4: Choose an approximate 1 x 1 Hessian H (] > 0.

5:  Compute

d["’]:argmin{g(é[’"*”)wta%/_g( )gm-nd+ Ld*H" + Apen(8l"— 1]+de,)}.See(9.4O)
d

below.

6:  Choose a stepsize o > 0 by the Armijo rule and set 8" = §l»~11 1 a["’]d[m]ej. The
step length al™ is chosen in such a way that in each step, there is an improvement in the
objective function Qy (.). The Armijo rule itself is defined as follows:

Armijo Rule: Choose ot > 0 and let o/ be the largest element of {(X{)(S[}[:O#l,zw satis-
fying

0, (Q[m]+(x[’"]d[’" )<Q}L(9[’")+a[’"]pﬁ[ m]

where A" =0/96,g(8)| g1 d™ + v(a")2H" + Apen(8" + dl"le ;) — Apen(§lm)).
A redsonable choice of the constants are 6 =0.1,p =0.001,v =0 and o = 1, see Bertsekas
(1995) (and hence with v = 0, the quadratic term above is irrelevant). For a computational
short-cut, see (9.41) below.

7: until numerical convergence
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details of it.

The initial value 619 matters since we are pursuing a non-convex optimization ex-
hibiting local minima. A pragmatic but useful approach is to choose (a CV-tuned)
ordinary Lasso solution for ﬁ[o], ignoring the grouping structure among the obser-
vations. By doing so, we ensure that we are at least as good (with respect to the
objective function in (9.39)) as an ordinary Lasso in a linear model. With B[O] at
hand, we then determine the covariance parameters /% by pursuing the iterations
in Algorithm 5 for the coordinates p+1,...p+¢*+ 1.

Choice of an approximate Hessian H ] The choice of an approximate 1 x |1 Hessian
H™ evaluated at the previous iteration 6"=1] (for the true Hessian which is the sec-
ond partial derivative % g(0) evaluated at 8"~y in Algorithm 5 is also driven
by considering computational efficiency. For numerical convergence (see Theorem
9.3 below), it is necessary that H ] s positive and bounded. We base the choice on
the Fisher information 7(6~'1), as described already in Section 4.7.2 in Chapter 4
(there, the approximate Hessian is a matrix due to the block up-date structure of the

algorithm): denoting by j = 7",
Hlm — min(max(](e[m*l])jj,cmi,,),cmax)

for some constants 0 < cpin < Cmax < 0, €.., Cmin = 107 and cpax = 108.

Computation of the direction d ], Regarding the computation of the direction d ],
we have to distinguish whether the index j = .#["] appears in the penalty pen(6) or
not:

gian [ 227 @i ety 8O lgin
median Hlm sy Fj ’ Hlm ’

—g%jg(@)\g[m—u JHM,

ifje{p+1,....,p+q"+1}.
(9.40)

Simplification of the direction and Armijo rule for the [ parameter. If H ] is not
truncated, i.e., the numerical value equals H m] — 1 (6[’"’1]) = [l the up-
date for the parameter vector f3 is explicit by taking advantage that g(0) is quadratic
with respect to . Using oy = 1, the stepsize al™ = o = 1 chosen by the Armijo
rule (with ¢ = 0) leads to the minimum of g(0) with respect to the component f3;.

The update ﬁ j[m] is then given analytically by

) (I (o= ¥y ) =2 )
N (T y,—1 (i)
i=1 x{y[m] ‘/1 'x(y[m]

)

-

Il
=

J[m](/l):Sign( (¥~ Yy ) )

i 7 i

9.41)
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where the n; X p matrix X; = (xsi), . ,xg)) andY; = Xffj)ﬁ([f;)l] (leaving out the jth
variable). Most often, H [m] — f (6[’”_1]) ;jj 1s not truncated and hence, the analytical
formula (9.41) can be used (without the need to compute a direction and perform-
ing a line search). This simplification reduces the computational cost considerably,

especially in the high-dimensional setup.

Due to the non-convexity of the objective function, we are not pursuing some warm-
start initial values but instead, we use for all A (from a grid of possible values) the
same initial value from e.g. an ordinary Lasso solution. Computational speed-up can
be achieved if the solution is sparse: as in described in Section 4.7.1, an active set
strategy is very effective here as well. Instead of cycling through all coordinates, we
can restrict ourselves to the current active set S( 3) and update all coordinates of ﬁ
only once a while, e.g., every 10th or 20th iteration.

Using the general theory from Tseng and Yun (2009) on block coordinate gradient
descent algorithms, one can establish the following result.

Proposition 9.3. If 01" is chosen according to Algorithm 5, then every cluster point
of {6}, is a stationary point of the objective function in (9.39).

We refer the reader for a proof to Schelldorfer et al. (2011).

Due to the non-convexity of the optimization problem, the CGD Algorithm 5 is not
finding a global optimum. However, the non-convexity is only due to the covariance
parameters. If ¢g* is small, we could, in principle, compute a global optimum over
all the parameters by using convex optimization for fixed 7, 6> and varying these
parameters over a (¢* + 1)-dimensional grid.?

9.3.8 Numerical results

We illustrate the performance of the ¢;-penalized maximum likelihood estima-
tor (9.36) (LMMLasso) where we choose the regularization parameter via BIC in
(9.37). We compare it with the Lasso and adaptive Lasso for linear models, using
BIC for selecting the regularization parameter, as described in Chapter 2; and thus,
with the latter two methods, the grouping structure is neglected. We mainly focus
here on predicting new observations whose group-membership is known, e.g., so-
called within-group prediction.

We consider the following scenario: N = 25 groups, n; =6 for i = 1,...,N ob-
servations per group, ¢ = 3 random effects and sy = 5 active fixed effects vari-
ables with B = (1,1.5,1.2,1,2,0,...,0)7, ¢ = 1. The covariates are generated as
(X)) ~ A,1(0,X) with £, = 0.2/l for r,s € {1,..., p— 1} whereas the first

3 For the case where ¢* = 1 and T € R+, the non-convexity arises due to a one-dimensional ratio
of the variance parameters.
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. . 1
component of X;; corresponds to an intercept, i.e., Xi(j )

ber of fixed covariates p and the variance parameter 72, where I} = ‘L‘zquq. The
three models considered are

= 1. We only alter the num-

Ml: p =10, M2: p =100, M3: p =500.

For measuring the quality of prediction, we generate a test set with 50 observations
per group and calculate the mean squared prediction error. The results are shown
in Table 9.1. We see very clearly that with higher degree of grouping structure, i.e.,

Model 7> LMMLasso Lasso adaptive Lasso

Ml 0 1.01 1.00 1.01
(p=10) 0.25 1.33 1.76 1.84
1 1.66 3.74 3.74

2 1.67 5.92 6.25

M2 0 1.12 1.26 1.09
(p=100) 0.25 1.51 1.75 1.75
1 1.94 4.35 4.53

2 2.49 7.04 7.02

M3 0 1.22 1.18 1.26
(p=500) 0.25 1.83 2.63 2.67
1 2.00 4.35 3.78

2 2.54 10.30 8.26

Table 9.1 Mean squared prediction error for three simulation examples. LMMLasso uses infor-
mation about which variables have random effects and the structure I = 721, whereas Lasso and
adaptive Lasso ignore the grouping structure in the data. Regularization parameters are chosen via
BIC.

with larger value of 72, the prediction is markedly improved by taking the grouping
structure into account: that is, Lasso and adaptive Lasso in linear models perform
substantially worse than LMMLasso. We do not show here the error when treating
all groups as separate datasets: such an approach would also be substantially worse
than LMMLasso which borrows strength from other groups via the fixed effects
(which are the same across groups).

9.3.8.1 Application: Riboflavin production data

We apply the ¢ -penalty procedure for linear mixed effects models, the LMMLasso
from (9.36), on real data about riboflavin production with bacillus subtilis. A version
of the data-set has been introduced in Section 9.2.6. The response variable is the log-
arithm of the riboflavin production rate of Bacillus subtilis. Here, there are p = 4088
covariates measuring the gene expression levels and N = 28 samples (groups) with
n; € {2,...,6} and Ny = 111 observations. Observations in the same group arise
from repeated measurements of the same strain of (genetically engineered) bacillus
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subtilis while different groups correspond to different strains. We standardize all co-
variates to have overall mean zero and variance one. For this example, we include
an unpenalized fixed effect intercept term (the first fixed effect covariable), that is,
the penalty is of the form A 24}2829 B;l-

First, we address the issue of determining the covariates which have both a fixed
and a random regression coefficient, that is, we have to find the matrix Z; C X;. We
first use the (ordinary) Lasso for fixed effects only, using 10-fold cross-validation
for tuning parameter selection. This yields a first active set S’init. Then, for each
variable j € Sinit» We fit a mixed effects model where only the jth variable has a
random effect, that is, we fit different mixed effects models with a single random
effect only. From these models, we obtain estimates of the corresponding variances
of random effects:

{25 j € Sinic}-

We then include random effects for covariates j € S'init where 7; > k for some thresh-
old k. Following this strategy (and using k = 0.05), it seems reasonable to fit a
model where two covariates have an additional random effect. Denoting these vari-
ables as k; and k», the model can be written as

Yij:Xijﬁ+Zij,k1bi,k1+Zij,k2bik2+8ij7 i=1,...,N, jZl,...,}’ll’. 9.42)

For the covariance structure, we assume independent random effects with different
variances.

We compare the results of LMMLasso and the adaptive LMMLasso with the plain
Lasso and plain adaptive Lasso; the latter two methods ignore the grouping structure
in the observations. Table 9.2 describes the results. We see that the error variance of

Estimates|LMMLasso adaptive LMMLasso Lasso adaptive Lasso

62 0.18 0.15 0.30 0.20
% 0.17 0.08 - -
f,gz 0.03 0.03 - -
N 18 14 21 20

Table 9.2 Riboflavin production data. Estimates of the error variance, of variances of two random
effects and size of the estimated active set. LMMLasso and its adaptive version, in comparison to
the Lasso and the adaptive Lasso ignoring the grouping structure in the data.

the Lasso can be considerably reduced using the LMMLasso, and likewise for the
corresponding adaptive versions. For the LMMLasso, 53% (= (0.17 + 0.03)/(0.18 +
0.17 + 0.03)) of the total variability is due to the between-group effect. This clearly
indicates that there is indeed a substantial variation between the groups. The esti-
mated active sets of LMMLasso or adaptive LMMLasso are a bit smaller than using
Lasso or the adaptive Lasso, respectively.
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In Section 9.2.6, we used a finite mixture of regressions (FMR) model to account
for possible inhomogeneity among different (mixture) components in the riboflavin
production data. There, we ignored the fact that we actually have information about
grouping of different observations (different groups correspond to different strains
of bacillus subtilis). We simply used a blind mixture modeling approach to incor-
porate inhomogeneity into the model. In contrast, a linear mixed effects model is
based on a known grouping structure among the observations. The two modeling
approaches should not be compared to each other.

9.4 Theory for /|-penalization with non-convex negative
log-likelihood

We present here some theory for /;-penalized smooth likelihood problems which are
generally non-convex: ¢;-penalized likelihood estimation in mixture of regressions
models or mixed effects models discussed in the previous sections are then special
cases thereof.

9.4.1 The setting and notation

Consider a parametrized family of densities { fy; y € ¥} with respect to Lebesgue
measure (L on R (i.e. the range for the response variable). The parameter space ¥ is
assumed to be a bounded subset of some finite-dimensional space, say

¥ c{yeR? ||y]l- <K},

where we have equipped (quite arbitrarily) the space R? with the sup-norm ||y/||e. =
max<j<q|Y;|. In our setup, the dimension d will be regarded as a fixed constant
(which still covers high-dimensionality of the covariates, as we will see).

We assume a setting with a covariate X € 2~ C R” and a response variable Y € R.
The true conditional density of ¥ given X = x is assumed to be equal to

where
Vi) e, Vxe 2.

That is, we assume that the true conditional density of ¥ given x is depending on
x only through some parameter function y°(x). Of course, the introduced notation
also applies to fixed instead of random covariates.
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The parameter {y°(x); x € 27} is assumed to have a nonparametric part of interest
{g%(x); x € 2°} and a low-dimensional nuisance part n°, i.e

v = (), "),

with
L) eR, Yxe 2, " eR" k+m=d.

In case of finite mixture of regressions (FMR) models from Section 9.2, g(x)” =
(0] x,¢7x,..., ¢! x) and 1 involves the parameters py, ..., P, 71, ..., 1. (In pre-
vious chapters we used the notation x¢;, assuming that x is a 1 X p vector). More
details are given in Section 9.4.3. For linear mixed effects models from Section 9.3,
g(x) = BTxand n = (1,log(c))”, see also Section 9.4.4.

With minus the log-likelihood as loss function, the so-called excess risk

fy(»)
E(vly®) = = [oe(E ) n0In(ay)

is the Kullback-Leibler information. For fixed covariates X, ...,X,, we define the
average excess risk
X,»)> ;

and for random design, we take the expectation E(& (w(X)|y°(X)).

E(yly?) —%): <

i=1

9.4.1.1 The margin

As in Section 6.4 from Chapter 6, we call the behavior of the excess risk & (y|y?)
near Y the margin. We will show in Lemma 9.1 that the margin is quadratic.

Denote by
Cy () =log fy ()
the log-density. Assuming the derivatives exist, we define the score function
2ty ()
dy

sy() =

b

and the Fisher information

9%ty (y)
dydyT

1) = [ sy )5y 0y mldy) = - FyO)u(dy).

Of course, we can then also look at /(y/(x)) using the parameter function y/(x).
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In the sequel, we introduce some conditions (Conditions 1 - 5). First, we will assume
boundedness of third derivatives.

Condition 1 It holds that

3
87 Y,
Y, 0y, 0y,

sup max

Il < G3 ),
vel (ji,j2.J3)e{l,....d}3 w( ) ()

where
sup [ Ga()fyp (I)AR() < Ca < oo

For a symmetric, positive semi-definite matrix A, we denote by Aéﬁn (A) be its small-
est eigenvalue.

Condition 2 For all x, the Fisher information matrix 1(y°(x)) is positive definite,
and in fact
Amin = inf Awin (1 (¥ (x))) > 0.

Furthermore, we will need the following identifiability condition.

Condition 3 For all € > 0, there exists an ot > 0, such that

inf  inf  E(wy'(x)) > 0.

X yey
lw—yO )l >e

Based on these three conditions we have the following result:

Lemma 9.1. Assume Conditions 1, 2, and 3. Then

S 1
=yl T <
where 5 5
1 dK 3A-.
2 __ o un min
Co_max{eo’ g, }’ 07 2432

A proof is given in Section 9.5.

9.4.1.2 The empirical process

We now specialize to the case where

v(0)" = (ge(",n"),
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g¢(x)T = (gl (x)7 s vgk<x))v
g (X) = g9 (x) =9 x, xeRP, ¢, e R, r=1,... k.

Thus, we focus on g(-) functions which are linear in some parameters ¢. We also
write

o) = (o) n"), 0" =(9f,....0{,n")
to make the dependence of the parameter function y(x) on ¥ more explicit.

We will assume that

T T
sup ||¢” x||cc = sup max |¢ <K.
xp” || xp1<r§k‘ rx| —

This can be viewed as a combined condition on 2~ and ¢. For example, if 2" is
bounded by a fixed constant, this supremum (for fixed ¢) is finite.

Our parameter space is now

Oc{o=(¢,....00 .0 sup||¢"x|| <K, [Nl <K}.  (9.43)

Note that @ is in principle (pk+m)-dimensional. The true parameter ¥° is assumed
to be an element of ©.

Let us define

Eﬂ(xa') = logfl[/(x)(')7 W(X)T = Wﬂ(x)T = (8¢(X)T,T]T)7 ﬁT = (¢1T7'~~a¢kT7nT)7
and consider the empirical process for fixed covariates X, ..., X,:

1 n
Vo (9) = - Y (z,g(xi,yi) - E[z,s(xi,y)xi]) :
i=1
We now fix some T > 1 and A¢ > 0 and define the set

Va(8) = Va(9)

T = sup <Th p. (944
e (6= 0T T =101 Vo

9.4.2 Oracle inequality for the Lasso for non-convex loss functions

For an optimality result, we need some condition on the design. Denote the active
set, i.e., the set of non-zero coefficients, by
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So= {(raj); ¢;9] 7&0}7 S0 = |S0|7

and let
Os = {0 (j) €S}, SC{l,... .k} x{1,...,p}.

Furthermore, let
~ 1 &
Ix=-Y x'x,

ni3

(where here, we denote by X; = (X(l), e ,X-<p)) a (1 x p)-vector).

1 1

Condition 4 (Restricted eigenvalue condition; see also Section 6.13.7). There exists
a constant K > 1, such that for all ¢ € RPK satisfying

[[9scll1 < 6l ][1,
it holds that .
95,113 < &2 Y ¢/ Zx 9y
r=1

For w(-)T = (g(-)T,nT), we use the notation

lwll, = Z Zgr )+ Z n;.

zlr

We also write for g(+) = (g1(-),... agk('))T’

Iglg, = Z Zgr

i =

Thus
k
2 T ¢
Igoll, = Y & Exr,
r=1
and the bound in the restricted eigenvalue condition then reads

1950112 < K*1g6 15, -

We employ the ¢;-penalized estimator

B(A)= (" (M), 7" (A)"
1 n
= argmln { =Y ls(X,Y)) +)LZ||¢,||1} (9.45)
T=(¢TaT)e6 L =i

We omit in the sequel the dependence of & on 4. Note that we consider here a global
minimizer: it may be difficult to compute if the empirical risk —n 'Y £5(X;,Y;)
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is non-convex in ©. We write ||¢||; = Y*_, ||¢,||; and denote by
W) = (g ()T, A7)T.

Theorem 9.1. (Oracle result for fixed design). Assume fixed covariates X, ...,X,,
Conditions 1-3 and 4, and that A > 2T Ay for the estimator in (9.45) with T and
Ao as in (9.44). Then on .7, defined in (9.44), for the average excess risk (average
Kullback-Leibler loss),

EIYO) +2(A —T2A) [ — %1 < (A +T2o) G250,

where cy and K are defined in Lemma 9.1 and Condition 4, respectively.

A proof is given in Section 9.5. The oracle inequality of Theorem 9.1 has the usual
interpretation, see Chapter 6. The rate for Ay is

A0 = Mn lOg (11 ) log(pT\/n)a
as described by the definition in (9.46), where the rate for M, is depending on the
model of interest. For example, for finite mixture of regressions (FMR) models, the
rate is M, < /log(n) as used in Lemma 9.2 and 9.3 below. On the other hand, for
linear mixed effects models, we have M, < log(n) as indicated after formula (9.53).
We then obtain

5’(1/7(1)\1//0) <9(A+ T).o)zc(z) K25 = 0(K2S0M,21 log(n)zlog(p Vn)/n),

saying that the average Kullback-Leibler (excess) risk achieves the optimal conver-
gence rate, up to the factor log(n)?M>log(p V n) as if one knew the sy non-zero
coefficients.

As a second implication, we obtain an estimation error bound
16 — 0%/, < 9(A +TAg)cEk2s0/2.

From such a result, and assuming a beta-min condition requiring that the non-zero
coefficients are sufficiently large, one can derive a variable screening result (see
Section 2.5, Corollary 7.6 and Section 7.8.5): on .7,

SA: {(raj); (ﬁr.j 7£ 0} ) SO-

We will show in Section 9.4.3, for finite mixture of regressions (FMR) models, that
the probability of the set .7 is large, as established by Corollary 9.1. The proof relies
on more general results, here formulated as Lemma 9.2. We make the following
assumption.
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Condition 5 For the score function sy (-) = sy, (-) we have:

sup [[ss ()l < G1(-)-
e)

Condition 5 primarily has notational character. Later, in Lemma 9.2 and particularly
in Lemma 9.3, the function G| (+) needs to be sufficiently regular.

Define

1 \
2o = M, logny | &PV (9.46)
n
(often, M,, < \/log(n) or M, =< log(n), depending on the model under considera-
tion). Let Py denote the probability for a fixed design x = (Xi,...,X,). With the
expression 1{-} we denote the indicator function.

Lemma 9.2. Assume Condition 5. Then, for constants c1, ¢ and c3 depending on k
and K, and for all T > 1,

Va(8) = Va(9)

< 1T,

sup

o7—(o7 n1ye6 (10 = %l +lIn —nll) v A0 —

with Py probability at least

|~ cpexp _ Tlog(n) nzlog(P\/n ] ( ZF Ny (dK))

3

where (fori=1,...,n)

F(¥) = GG (¥ )>M}+E[Gl< J{GI(1)

Xx,':|.

Regarding the constants Ay and K, see (9.46) and (9.43), respectively.

A proof is given in Section 9.5.

9.4.3 Theory for finite mixture of regressions models

In the finite mixture of regressions (FMR) model from (9.2) with k components, the

parameter is 07 = (¢7,n7) = (¢7,..., ¢ logp1,...,logpy,logm,. .., log m_1).
where p, = 0, ! is the inverse standard deviation in mixture component r and the
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7,’s are the mixture probabilities. For mathematical convenience and simpler no-
tation, we consider here the log-transformed p and 7 parameters in order to have
lower and upper bounds for p and 7. Obviously, there is a one-to-one correspon-
dence between ¥ and 6 from Section 9.2.1.1.

Let the parameter space be

6 {0 sup|¢”x]~ <K, | logpll- < K,—K<logm <0,...,—K<logm._; <0,
X
k—1
Y mo<1}, (9.47)
r=1

andm, =1— ’;;11 .

As in (9.45), we consider

n k

0 . — Pr 1 2

d(A)=argmin  —n"'Y log b exp(—=(p,Yi — Xi¢,)")
v€O E{ r; V2m 2

k
+ A Y 100 (9.48)
r=1

This is the estimator from Section 9.2.2.2 with ¥ = 0. We emphasize the bounded-
ness of the parameter space by using the notation @. We focus here on any global
minimizer of the penalized negative log-likelihood which is very difficult (or virtu-
ally impossible) to compute.

In the following, when writing 6 (A ), we mean the estimator transformed from 3 (1)
to 6(A) in the parametrization 6 from Section 9.2.1.1. As before, we denote the
average excess risk by &(8(1)[6°).

9.4.3.1 Oracle result for FMR models

We specialize now our results from Section 9.4.2 to FMR models.

Proposition 9.4. For fixed design FMR models as in (9.2) with © in (9.47), Condi-
tions 1,2 and 3 are met, for appropriate Cs, Amin and {0}, depending on k and K.
Also Condition 5 holds, with

Gi(y) =Xyl +K.

Proposition 9.4 follows from straightforward calculations and we leave the deriva-
tion as Problem 9.7.

In order to show that the probability for the set .7 is large, we invoke Lemma 9.2
and the following result.
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Lemma 9.3. For fixed design FMR models as in (9.2) with © in (9.47): for some
constants ca, cs and cg, depending on k, and K, and for M,, = c4+/logn and n > cg,

the following holds:
l 1
( Z F ogn > S )
n n

F(Y:) = Gi(Y){G1(Y;) > M, } +E[G1 (Y){G1(Y) > M, }|X = Xi],

where, fori=1,...,n,

and G1(+) is as in Proposition 9.4.

A proof is given in Section 9.5.

Hence, the oracle result in Theorem 9.1 for the ¢;-penalized estimator in the FMR
model holds on a set .7, summarized in Theorem 9.2, and this set .7 has large prob-
ability due to Lemma 9.2 and Lemma 9.3 as described in the following corollary.

Corollary 9.1. For fixed design FMR models as in (9.2) with © in (9.47), we have
for constants cy,cq4,c7,c8 depending on k, and K,

T?1og(n)?*log(pVn)

2
7

P[7]>1—cexp|— n~! foralln > cg,

where 7 is defined with Ay = M, log(n)+/log(pV n)/n and M,, = c4+/log(n).

Theorem 9.2. (Oracle result for FMR models). Consider a fixed design FMR model
as in (9.2) with @ in (9.47). Assume Condition 4 (restricted eigenvalue condition)
and that A > 2T A for the estimator in (9.48). Then on .7, which has large probabil-
ity as stated in Corollary 9.1, for the average excess risk (average Kullback-Leibler
loss),

E(B(1)16°) +2(A —T2o)|1ds5 11 < 9(A+TA) K50,

where ¢y and K are defined in Lemma 9.1 and Condition 4, respectively.

Note that the Conditions 1, 2, 3 and 5 hold automatically for FMR models, as de-
scribed in Proposition 9.4. We still require a restricted eigenvalue condition on the
design, here Condition 4.

The interpretation of Theorem 9.2 is as follows. One can choose A = 2T 4y =<
/log(n)31log(p\Vn)/n, using A9 as in Corollary 9.1. For the average excess risk
(Kullback-Leibler divergence) we have a convergence rate of

E(O(1)|60) = Op (Kzsolog(n)310g(p\/n)/n)

which is up to the log-factors the rate if one knew which of the sy variables were
active. Furthermore, the oracle inequality implies
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1607l = 0 ( oy log(n et v ).

This allows to derive a variable screening property analogous to Section 2.5 (e.g.
formula (2.13)), and we also refer to Corollary 7.6. If the non-zero coefficients of
¢ are sufficiently large,

. 0 N ;
>0k 1 1 v ’
(in, 1971 ( s01/log(n)* log(p n)/n)

(the analogue of the beta-min condition in formula (2.23)) then, with high probabil-
ity,

S= {(r,)); q%nj;,éo, r=1,....k, j=1,....,p} 25
using the notation as in (9.19).

Without Condition 4 about restricted eigenvalues, one can still derive a high-
dimensional consistency result:

E(O(1)]0°) = 0p(1) (n — o), (9.49)

requiring [|¢°]|1 = ¥, 19711 = o(y/n/(log(n)*log(pV n))) (n — o) and choos-
ing A = C/log(n)3log(p Vn)/n for some C > 0 sufficiently large. We leave the
derivation of (9.49) as Problem 9.8.

9.4.4 Theory for linear mixed effects models

We can establish an oracle inequality for linear mixed effects models using the gen-
eral theory presented in Sections 9.4.1-9.4.2.

As before, consider the group index i = 1,...,N and let n; = n denote the number
of observations within a group. Furthermore, denote by Y; € % C R” the response
variable, X; the fixed covariates in some space 2" C R"*? and Z; C X,. Define the
parameter 87 = (B7, 77 log(c)) = (BT,n”) € RP*4 +! as in Section 9.3.7 and de-
note by 6° the true parameter vector. For a constant 0 < K < oo, define the parameter
space to be

6 ={0=B"n")";sup |B"x| <K, |n|l~ <K, Iy, positive definite}
xeZ
C RO (9.50)

where ||1[[ec = max;—; g1 |m| and Iy, is as in (9.39). We modify the estimator
in (9.36) by restricting the solution to be in the compact parameter space ®:
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N
Y- (log(det(Vi)) + (Y; = X:B)TV,” (Y; = X)) + 1B ).

i=1

6(2) = argmin (
0co

| —

9.51)

Denote by fox,z, (6 € @) the Gaussian density for Y; with respect to the above
parametrization. The excess risk is

£x2(616°) = [ log (M)feo,x,z(yw(dwv 9.52)

and we define the average excess risk as
ya 0 1 ¢ 0
(g)xlw-«XNyzl’-wZN(e‘e )= N Z(g)xivzi<0|6 )
i=1

We now state some assumptions.

(A1) The eigenvalues of Z Z;, denoted by (vj(-i))‘j.:l (i=1,...,N), are bounded:

vi? <K < oo forall i and j, with K from (9.50).

(A2)
(a) Let (coj(.i));f:] be the eigenvalues of Z;I0Z for i =1,...,N. At least two
eigenvalues are different, i.e., for all i there exist j; # j» € {l,...,n} such
(i) (i)
that @;, #* ;'
(b) Fori=1,...,N, the matrices £2; defined by

ACRYSIR/
aep+r i aGp+s

, ns=1,...,4"+1

(£2;) s = trace (Vil
0=00

are strictly positive definite.
(A3) There exists a constant k¥ > 1, such that for all 8 € R? satisfying
[1Bsg 11 < 6]|Bs, 1
it holds that
1Bs, 113 < k*B" Zx B,

where £ , = (Nn) ' EY | Z'}=1X,‘§Xij with (1 x p)-vector X;; = (Xl.(jl), e ,Xi(jp)),
So={J: BY # 0} and 5o = [So|.

Assumption (A2)(a) automatically holds if the covariance matrix of the random
effects is of the form I; = Tzquq (Problem 9.6). Assumption (A3) is a restricted
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eigenvalue assumption as in Condition 4 in Section 9.4.2. Following the general
theory in Section 9.4, we outline now an oracle inequality for linear mixed effects
models. Define

1 VN
%o = My log(N) % , 9.53)
where the constant My < log(N). For any T > 1, let .7 be a set defined by the
underlying empirical process. It can be shown that this set .7 has large probability,

thereby using assumption (Al).

Proposition 9.5. Consider the estimator (9.51). Under Assumptions (Al )-(A3), and
for A > 2T Ay, then, on 7, for the average excess risk,

E(6(2)]60) +2(A =T20) | B — Bl < 9A+TAo)*c5K50
for a constant co (which is independent of N, n, p and the design).

We do not provide a proof but point out that the result can be established using the
theory from Section 9.4. The details are given in Schelldorfer et al. (2011). We
remark again that assumption (A1) is used to show that P[7] is large, but we also
need it to ensure quadratic behavior of the margin (see also Lemma 9.1).

The interpretation of Proposition 9.5 is again as for FMR models discussed after
Theorem 9.2 in Section 9.4.3.1. Choose A = 2T Ay < /log(N)*log(p V N) /N, using
(9.53) with My =< log(N), and thus, for the average excess risk (Kullback-Leibler
divergence), the estimator has convergence rate

&(6(1)|60) = Op (k*solog(N)*log(pVN)/N)

which is up to the log-factors the rate if one knew which of the s variables were
active. The oracle inequality also implies an /;-norm estimation error bound:

16 - Bl = 0r ( oy loe)*log(p M)/

Using this, we can then derive a variable screening property as in Section 2.5, see
also Corollary 7.6: if the non-zero coefficients of B are sufficiently large,

mgn |/3]0\ >0 (K2SQ\/10g(N)4 log(p \/N)/N)
J€50
(the analogue of the beta-min condition in formula 2.23) then, with high probability,

S={j;Bj#0, j=1,...,p} 2 So.
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An oracle inequality and an /;-estimation error bound can be established for the
adaptive LMMLasso estimator in (9.38) as well. Assuming a beta-min condition,
such a result is given in Schelldorfer et al. (2011).

9.5 Proofs for Section 9.4

9.5.1 Proof of Lemma 9.1

It is clear that

EWWY) = (v =y 1(vO) (W —y°) /241y,

where
Iy —v°I3 / 9y
ryl < ———1 [ sup max |=——=——=—|f,0dU
| W‘ 6 We‘[’jlijrj?) aWJ]aWJzaWB WO
d3/2c3
< ——llv=v"l5.
Hence

EWVO ) = 1w — v () |3AR/2 —d*2Cs ]y — w0 () [3/6.

Now, apply the auxiliary lemma below, with K3 = dK?, A> = A2, /2, and
C=d?c3/6. 0
Auxiliary Lemma. Let h : [—Ky,Ko| — [0,0) have the following properties:

(i)V € >03 o >0 such that infe | <k,
(ii)) 3A >0, C >0, such that ¥V |z| < K,

Then V' |z| < Ko,

h(Z) 2 aﬁ;
h(z) > A%2* —Clz)>.

h(z) > 2%/C3,

where )
1 K
CS :max[,0 , &
80 aé'()

AZ
:%.

Proof (Auxiliary Lemma).
If & > Ko, we have h(z) > A%z?/2 for all |z] < K.

If &y < Ko and 7| < &), we also have h(z) > (A% — gC)z> > A?Z%/2.
If &) < Ko and & < |z| < Ko, we have h(z) > o, = K30, /K3 > |2]* 0, /K3. O
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9.5.2 Proof of Lemma 9.2

In order to prove Lemma 9.2, we first state and proof a suitable entropy bound:

We introduce the norm

n

I, =5 Y1)

i=1

For a collection # of functions on 2" x %, we let H(-,.7¢,|| - ||p,) be the entropy
of 7 equipped with the metric induced by the norm || - ||p, (for a definition of the
entropy of a metric space see Section 14.12 in Chapter 14).

Define for € > 0,
O(e)={" =(¢],....0/ ") €O : ||o—goll1 + [In—noll2 < €}

Entropy Lemma. For a constant Cy depending on k and m (the dimensions of the
parts of the parameter ), we have for all u > 0 and M,, > 0,

~ 2 M2 M,
H(u,{(fﬂ—ﬁﬁ*)l{(}] SM,,} S @(8)}7” . pn) SCos L log(su ) .

12

Proof (Entropy Lemma).
We have

k 2
0o (xy) — L3 (e 3) P < G) [Z (6, —8)7x]+In —ﬁn]}

r=1

k
< a0 |y <¢r—<5r>Tx|2+|n—ﬁ||%].

r=1
It follows that

k
[t —05){Gr < My} < b2 [Z

r=1

12 B ~

Y10, 875+ I~ [B).
i=1

Let N(-,A,d) denote the covering number of a metric space (A,d) with metric (in-

duced by the norm) d, and H(-,A,d) =1ogN(-,A,d) be its entropy (for a definition

of the covering number of a metric space see Section 14.12 in Chapter 14. If A is a

ball with radius € in Euclidean space RY, one has by Lemma 14.27,

3
H(u,A,d) < Nlog ( 8) Nu>0.

u
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Thus H(u,{n e R™: |n—noll2 <&}, |- ||2) <mlog (578) , Yu > 0. Moreover, apply-

ing a bound as in Lemma 2.6.11 of van der Vaart and Wellner (1996), see Lemma
14.29 in Chapter 14, gives

k 2
H(zu,{zwwo,r)%: 16— oll < e},n . ) s<;+1)log<1+kp>.

r=1

We can therefore conclude that

# (3vata {0 ta)1(Gr <M} 0.6 b1

< (‘:’;+m+1> (log (if) +10g(1+kp)> .

Let us now turn to the main proof of Lemma 9.2.

In what follows, {c, } are constants depending on &, m and K. The truncated version
of the empirical process is
X= xiD .

Let € > 0 be arbitrary. We apply Corollary 14.4 (Section 14.7) to the class

V;runc(ﬁ) _ % i (&9 (xi, Y){G1(Y;) <M, }—E [619 (x, Y){G(Y) <M, }

i=1

{(&9 —6190)1{61 SM,,} 9 e @(8)}

The result (14.10) then gives

Px< sup |VMC(9) — VI ()| > c€T M, logn
veb(¢)

log(p\/n))

n

T%log’nlog(pVn)(e2V 1
< c7exp {— o 7 Og(clzj ult )}
8

We then invoke the peeling device (see van de Geer (2000)): split the set O into sets
{90€6: 27U <|p — 9ol + 1 —moll2 <2773,
where j € Z, and < 277+ > Ay. There are no more than cglogn indices j < 0 with

27/+1 > 2. Hence, we get

Vrfrunc (.0) . Vrfrunc (190)

log(pVn
Vo <2c¢TM,logn %,

sup " *
oo wryce (10— 7T+ I — 1)
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with Py probability at least

T210e%nl V;
1 —c7[eologn]exp [— o8 1 ;)g(p ”)}
3

T?log? nlog(p \/n)}

2
1o

> 1—crexp {—
Finally, to remove the truncation, we use
|(Co (x,y) — Loy (x,)){G1(y) > My }| < dKG1(»){G1(y) > My}
Hence
G (0) = Vi (00) = (4(0) ~Va(ov))|
([0 —o*[[i+ln—n*2) VA
< 2o X (0001610 > i+ G0 )

X:x,»D.

9.5.3 Proof of Theorem 9.1

Using the definition of {, and on .7 defined in (9.44), we have the basic inequality

W)+ 2181 < T | (16— ¢° 11 + 111 = n°ll2) v Ao | +A[9°I1-

By Lemma 9.1, )

EWIY°) = 19— v°lIg, /<5
Case 1 Suppose that

16— 6"l + 17 —1°|l2 < 2o
Then we find, using the triangle inequality,

EWIY’) <TAG+ 216 —¢°|1,

and hence

E(WW°) + 240 — 901 < TAG+3A]¢ —¢°|s
< (BA+T2o) .
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Case 2 Suppose that
16— ¢°ll1 + 191 = n°[l2 = 2o,
and that
T 0l =n°l|2 > (A +T20)llds, — (#°)s, -

Then we get, using now the triangle inequality ||¢°(|1 —||¢s, 1 < ||ds, — (9°)s,]/1
and adding (A — AT)||¢s, — (¢°)s, ||1 to left- and right-hand side,

EWIV) +(A—T2) |6 — "1 < (A +T2)|It —n°|l2

< (A+T20)’ch/2+ 1 —n°l3/(2c5)
< (A+TA)%cE )2+ E(W|y) /2.
So then ) .
EWIW) +2(A ~T2)l19 — ¢°ll1 < (A +T2o)’c5-
Case 3 Suppose that .
16— 9°lli +11%1 = n°[l2 = 2o,
and that

Toll —n°ll2 < (A +T20)|| s, — (6°)s,]11-
Then we have
EWIW)+ (A —T20)dssll1 < 2(A+T2o)| 95, — (9°)s,]11-

So then
[[sg Il < 6llds, — (¢°)s; 11

We can then apply the restricted eigenvalue condition to ¢ — ¢°. But first, add (A —
20T) || ds, — (¢°)s, ||1 to left- and right-hand side. The restricted eigenvalue condition
then gives (invoking 2(A +T ) + (A —TAhy) <3(A+T X))
EWY) + (A =T2)[19 =9Il < 3(A+T20)V50l1s, — ¢°12
<3(A+T0)Vsox]2 £ llo,
< 9(h + Tho 2 50/2+ E(WIW) 2.

So we arrive at

EIW®) +2( —T20) [ — 6°[11 < 94 +TAo)Fiso.
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9.5.4 Proof of Lemma 9.3

Let Z be a standard normal random variable. Then by straightforward computations,
forall M > 0,
E[|Z[1{|Z| > M}] < 2exp[-M?/2],

and
E[|Z]*1{|Z| > M}] < (M +2)exp[-M?/2].

Thus, for n independent copies Zi,...,Z, of Z, and M = 2/logn,

i=1

1 & 4logn
P<n2|z,-|1{|z,-|>M}> f)

i=1
_ nBlZP1Z] > My
4(logn)?

<P (12 2] > M} —El|Z {1zl > M) > 21‘,?”)

<

2
n
The result follows from this, as

G1(Y)=ef|r| +K,

and Y has a Gaussian mixture distribution. O

Problems

9.1. Show that the objective function in the optimization in (9.7) is convex in ¢, p.
9.2. Derive formula (9.8).

9.3. Generalized M-step in GEM algorithm for fitting FMR models
Prove formula (9.24) and derive the up-dates for p, and ¢, ; at the end of Section
9.2.9 (before Section 9.2.9.1).

9.4. Prove (9.27) by using Jensen’s inequality, saying that

E[g(X)] > g(E[X])

for any convex function g(+).

9.5. Linear mixed effects models
(a) Derive the negative log-likelihood (9.34) for linear mixed effects models.
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(b) Using a simple example of a linear mixed effects model, show that the negative
log-likelihood in (9.34) is a non-convex function in B, 7,062 (when 8, 7,02 range
over the whole parameter R? x R~ x R+, assuming I = 721).

9.6. Show that assumption (A2)(a) in Section 9.4.4 automatically holds for the co-
variance model I7 = %1,

9.7. Show that Proposition 9.4 holds true.

9.8. Consistency of FMRLasso

Derive the result in (9.49), using the first equation from the proof of Theorem 9.1 in
Section 9.5.3. Thereby, use the fact that Conditions 1, 2, 3, and 5 hold automatically
for FMR models as shown in Proposition 9.4.



Chapter 10

Stable solutions

Abstract Estimation of discrete structure such as in variable selection or graphi-
cal modeling is notoriously difficult, especially for high-dimensional data. Subsam-
pling or bootstrapping have the potential to substantially increase the stability of
high-dimensional selection algorithms and to quantify their uncertainties. Stability
via subsampling or bootstrapping has been introduced by Breiman (1996) in the
context of prediction. Here, the focus is different: the resampling scheme can pro-
vide finite sample control for certain error rates of false discoveries and hence a
transparent principle to choose a proper amount of regularization for structure esti-
mation. We discuss methodology and theory for very general settings which include
variable selection in linear or generalized linear models or graphical modeling from
Chapter 13. For the special case of variable selection in linear models, the theoreti-
cal properties (developed here) for consistent selection using stable solutions based
on subsampling or bootstrapping require slightly stronger assumptions and are less
refined than say for the adaptive or thresholded Lasso.

10.1 Organization of the chapter

After an introduction, we present in Section 10.2 some examples motivating the
need for stability. The definition of so-called “Stability Selection”, originally pro-
posed and analyzed in Meinshausen and Biihlmann (2010), is given in Section 10.3.
There, we also include the main theorem on error control for the expected number of
false positive selections. The following sections discuss further numerical examples
and extensions, making also a brief comparison with the theory for the (adaptive)
Lasso. The proof of the main theorem is presented in Section 10.7.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 339
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 10,
© Springer-Verlag Berlin Heidelberg 2011
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10.2 Introduction, stability and subsampling

We have discussed in Chapter 2, Section 2.6, and in Chapters 3, 4 and 7 the problem
of variable (or group of variables) selection. In particular, we have argued that two-
stage procedures like the adaptive or thresholded (Group)Lasso (Sections 2.8, 2.9,
4.6 and 7.8) or the relaxed Lasso (Section 2.10) have better potential and properties
for selection than a single-stage Lasso procedure.

The results for the Lasso and its adaptive or thresholded version say that consistent
variable selection is possible under (fairly restrictive) conditions on the design and
on the size of the non-zero regression coefficients (i.e. the beta-min condition as
discussed in Section 7.4), and if the regularization is chosen appropriately. Two
questions which arise in this context are as follows. First, how “stable” (under re-
or subsampling) is such a selection and can we do better with another “more stable”
procedure? Secondly, can we achieve some type-I error control of falsely selecting
an irrelevant variable? We will show that subsampling or bootstrapping and multiple
sample splitting are simple but effective techniques for increased “stability” and
for assigning p-values; for the latter see Chapter 11. Stability via subsampling or
bootstrapping has been introduced by Breiman (1996) but only in the context of
prediction and mainly for decision tree methods.

We assume that the data are of the form
Zi,....Z,1.id.

Important examples include the case of generalized regression where Z; = (X;,Y;)
with univariate response ¥; and p-dimensional covariate X;, or Z; = X; could be a
p-dimensional variable as appearing in graphical modeling (see Chapter 13) or in
cluster analysis.

Most concrete is a random-design linear model as discussed in Chapter 2, formula
(2.1). We consider here the matrix- and vector-notation

Y =XB +e, (10.1)

where Y, X and € are n X 1, n X p and n X 1 vectors or matrices, respectively (where
€ is independent of X, with i.i.d. components and having mean zero). The goal is
variable selection, i.e. estimation of

So={J; B} #0}.

If p > n, we need to regularize the estimation procedure. Choosing the amount of
regularization for variable selection can be more difficult and challenging than for
prediction where a cross-validation scheme can be used. We refer to Chapter 7 where
we discuss under which circumstances it is possible to simultaneously achieve ac-
curate prediction and reasonable variable selection.
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Here, we address the problem of proper regularization with a very generic subsam-
pling approach (and bootstrapping would behave similarly). We show that subsam-
pling can be used to determine the amount of regularization such that a certain fam-
ilywise type-I error rate in multiple testing can be conservatively controlled, even
for finite sample size. Beyond the issue of choosing the amount of regularization,
the subsampling approach yields a new structure estimation or variable selection
scheme. It is found empirically that it is often substantially better (and never really
worse) than approaches without using the additional subsampling procedure.

In the sequel of this chapter, we consider the following setting and notation. For
a generic structure estimation or variable selection technique, we assume that we
have a tuning parameter A € A C R™ that determines the amount of regularization.
A prime example is the penalty parameter in the Lasso, see (2.2) in Chapter 2, for
a linear model as in (10.1). Alternatively, for such a linear model, we could also
use some forward selection or boosting method and the parameter A would then be
the number of steps in these algorithms, see Chapter 12. (We note the difference
that a large number of steps of iterations would have a meaning opposite to a large
penalty parameter. However, this does not cause conceptual problems.) For every
value A € A, we obtain a structure estimate S(1) C {1,...,p}, where the latter
enumerates the p features where each of these can be present or absent.

10.2.1 Stability paths for linear models

We motivate the concept of stability paths first for linear models
Y=XB+¢

as in (10.1). Stability paths are derived from the concept of regularization paths. A
regularization path is given by the coefficient value of each variable over all regu-
larization parameters: {8;(1); A € A, j=1,...,p}. For any given regularization
parameter A € A, the selected set of variables

S() = {js Bj(A) # 0}

is implicitly a function of the samples I = {1,...,n}. We write S(1) = S, (I) where
necessary to express this dependence on the sample.

Let I* now be a random subsample of {1,...,n} of size |n/2], drawn without re-
placement. For every set K C {1,...,p}, the subsampling-probability of being in
the selected set S (-) is

Tg (1) = P*[K C $;(I")]. (10.2)

The probability P* in (10.2) is with respect to the random subsampling and it equals
the relative frequency for K C 8, () over all () subsets I, (b=1..., (1)) of size
m = |n/2], which itself is a U-statistic of order m = |n/2]. The expression in (10.2)

s \m
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can be approximated by B random subsamples 7*!, ..., "5 (B large)

B! i 1(K C S, (I"")).
b=1

The subsample size of |n/2] is chosen as it resembles most closely the bootstrap
(Freedman, 1977; Biihlmann and Yu, 2002) (and it allows for slightly faster com-
putation than bootstrapping since the estimator is based and computed many times
on subsample size |n/2] only).

For every variable j = 1,..., p, the stability path is given by the selection probabili-
ties

{I(A): j=1,....p, A €A}

It is complementing the usual regularization path plots that show the coefficients of
all variables

{Bi(A); j=1,....,p, A € A}

as a function of the regularization parameter A. Figure 10.1 illustrates the two dif-
ferent paths.

10.2.1.1 Riboflavin production with bacillus subtilis

We have introduced in Section 9.2.6 a data set about riboflavin (vitamin B2) produc-
tion with bacillus subtilis. The real-valued response variable Y is the logarithm of
the riboflavin production rate and there is a p = 4088-dimensional covariate mea-
suring the logarithm of the expression level of 4088 genes. Here, we consider a
smaller subset of the data with (sub-)sample size n = 115 which should be more
homogeneous than the larger data set in Section 9.2.6 with n = 146 samples. Cer-
tain mutations of genes are thought to lead to higher vitamin concentrations and the
challenge is to identify those relevant genes via a linear regression analysis. That
is, we consider a linear model as in (10.1) and the goal is to infer the set of active
variables So = {j; B} # 0}.

We use the Lasso for variable selection (see Section 2.6), or at least for variable
screening (see Section 2.5), to infer the active set Sy. To see how the Lasso and the
related stability path cope with noise variables, we randomly permute all but 6 of
the p = 4088 gene expression variables across the n = 115 samples, using the same
permutation to keep the dependence structure between the permuted gene expres-
sion variables intact. The set of 6 non-permuted genes has been chosen randomly
(once) among the 200 genes with the highest marginal empirical correlation with
the response Y. The Lasso regularization path {3(1); A € A} is shown in the left
panel of Figure 10.1, as a function of the regularization parameter A but rescaled so
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that A = 1 corresponds to the minimal A-value for which the null model is selected,
usually denoted as Apmax (see e.g Section 2.12) and A = 0 amounts to the so-called
Basis Pursuit solution which includes min(n, p) variables. Three (among the six) of
the “relevant” (non-permuted) genes stand out, but the remaining other three “rele-
vant” variables are hidden within the paths of noise covariates (permuted variables).
The right panel of Figure 10.1 shows the stability path. At least four (among the six)
“relevant” variables stand out much clearer now than they did in the Lasso regular-
ization path plot.

Fig. 10.1 Left: the Lasso regularization path for the riboflavin production data set with n =115 and
p = 4088. The paths of the 6 non-permuted variables (genes) are plotted as solid, red lines, while
the paths of the 4082 permuted genes are shown as broken, black lines. Selecting a model including
all 6 non-permuted variables (genes) invariably means selecting a large number of irrelevant noise
variables. Right: the stability path of the Lasso. The first 4 variables chosen with stability selection
are truly non-permuted variables. The figure is taken from Meinshausen and Biihlmann (2010).

Choosing the right regularization parameter is very difficult for the original Lasso
path. The prediction optimal, cross-validated choice often includes false positive
selections, as outlined in Section 2.5.1 in Chapter 2: this can be observed in this ex-
ample as well, where 14 permuted noise variables are included in the model chosen
by 10-fold cross-validation. Figure 10.1 motivates that choosing the right regular-
ization parameter is much less critical for the stability path and that we have a better
chance to select truly relevant variables.
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10.2.1.2 Motif regression in computational biology

We present here another example illustrating that scoring the relevance of a variable
in terms of the subsampling selection probabilities IT;(A) is often much better than

in terms of the absolute values of regression coefficients |f i(4)].

We consider a real data set about motif regression. We refer to Sections 2.5.2 and
2.8.5.1 for a brief motivation and description of motif regression. Here, we consider
a subset of the data in Section 2.8.5.1. We have a univariate real-valued response
variable ¥;, measuring the expression of gene i and we have a p-dimensional covari-
ate X; € R” where Xi(j) is an abundance score of a short candidate motif j in the
DNA segment around gene i. The latter is based on DNA sequence data only. There
are n = 1200 samples and p = 660 covariates arising from a heat-shock experiment
with yeast. We relate the centered response Y and centered covariates X using a
linear model

P .
Y=Y BxY +e(i=1,...,n).
=1

The goal is variable selection based on the idea that the relevant covariates in the
linear model correspond to the relevant motifs (binding sites) of a particular tran-
scription factor.

We use the Lasso in (2.2) with regularization parameter ﬁcv from 10-fold cross-
validation. This procedure selects 20 variables having corresponding estimated re-
gression coefficients different from zero. We then run the subsampling and compute
the subsampling selection probabilities for Lasso with A¢y. Table 10.1 describes the
results for the 9 most promising variables (corresponding to motifs) ordered with
respect to |3 j(jtcv) |. Questions which arise include the following. Should we report

motifj| 41 29 635 19 34 603 618 596 30
IB;| | 142 1.27 0.81 0.61 0.57 0.49 0.33 0.3 0.3
f[j 100% 100% 100% 74% 98% 32% 81% 80% 97%

Table 10.1 Lasso with Acy from 10-fold cross-validation for a motif regression problem with
n=1200 and p = 660. The number of non-zero estimated coefficients is 20: the first row shows the
variables with the nine largest coefficients in absolute values. Second row: subsampling selection
probabilities for these nine variables.

the relevance of the variables in terms of ﬁ j(ﬁcv) or according to a different order-
ing? How many of these 20 variables are relevant? When looking at the subsampling
selection probabilities in Table 10.1, we see that subsampling assigns another order-

ing.
Next, we generate some semi-synthetic data. We select 5 variables at random, say
Jis--oyjs €{1,...,p}, among all p = 660 covariates and set
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50 y (i)
Y, =Y BiXW 4 (i=1,...,n=1200),
k=1

where &1, ...,¢&, i.i.d. ~.4#(0,062). We choose B]OI =...= B,OS and o2 such that the
signal to noise ratio is very low with SNR = 0.1. For estimation, we still use all the
p = 660 covariates although 655 of them are noise variables. Now we know the true
active set So = {J; [310 # 0} (whose cardinality is 5). Figure 10.2 illustrates that using

the subsampling selection probabilities IT (A), we can perfectly distinguish between
active and noise covariates if we were able to choose an appropriate threshold value
for ITj(Acy). This is in contrast to using f3;(Acy) where we cannot make a perfect
distinction between active and noise covariates using any threshold value for the
estimated regression coefficients.

'_
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Fig. 10.2 Semi-synthetic motif regression problem with real data design and artificial sparse re-
gression coefficients and Gaussian noise. We use the Lasso with A¢cy from cross-validation. x-axis:
I1;(Acv) and y-axis: | Bj(Acy)|. Red crosses: true active variables; black crosses: noise variables.
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10.3 Stability selection

In a traditional setting, variable selection would amount to choosing one element of
the set of models

{8(2); A € A}, (10.3)

where A is again the set of considered regularization parameters, which can be either
continuous or discrete. The set in (10.3) is the set of all variable selection subsets
that arise when varying the regularization parameter A € A. There are typically two
problems: first, the true active set of variables Sy might not be a member of (10.3).
Second, even if it is a member, it is typically very hard with high-dimensional data
to determine the right amount of regularization A to select exactly Sp, or at least a
close approximation. When S‘(l) is from the Lasso, the first issue is characterized
by the irrepresentable condition which is sufficient and (essentially) necessary that
So is in the set in (10.3), see Section 2.6.1 in Chapter 2 and Section 7.5.1 in Chapter
7.

With stability selection, we do not simply select one set of variables in the list (10.3).
Instead, the data are perturbed (by subsampling) many times and we choose all
structures or variables that occur in a large fraction of the resulting selection sets.
We use the following definition for stable variables.

For a cutoff my, with 0 < my,, < 1 and a set of regularization parameters A, the set
of stable variables is defined as

Sqtavle = {J; maxITj(A) > myp,}. (10.4)
AEA

Here, IT is as defined in (10.2). We keep variables with a high selection probability
and disregard those with low selection probabilities. Of course, the problem has now
shifted to choose a good cutoff value 0 < my,, < 1 which is a tuning parameter of the
stability selection procedure. We will discuss its choice below in Section 10.3.1. It
is worthwhile to emphasize that empirical results do not depend very much on the
choice of the initial regularization A (if A = A is a singleton) or the initial region
A for the regularization parameter: loosely speaking, as long as A or A contain
values leading to overestimation of the true active set of variables S, the results after
the stability selection procedure as described in (10.4) are stable. See for example
Figure 10.1.

10.3.1 Choice of regularization and error control

We focus here on the problem how to choose the regularization parameter 7y, in
the stability selection procedure in (10.4). We address it by controlling the expected
number of false positives (false selections), i.e. type I error control.
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For such an error control, we introduce first some additional notation. Let S A =
Urea S (1) be the set of selected variables when varying the regularization parameter
A € A. Let g4 be the expected number of selected variables g5 = E|S, (I)]. (Note
the slight change of notation where we emphasize with S, (1) the dependence on the
sample I). Define V to be the number of falsely selected variables (false positives)
with stability selection,

V= S6 N gstable ‘

The goal is to achieve control or an upper bound for E[V], the expected number of
false positives.

Since the distribution of the underlying estimator S (1) depends on many unknown
quantities, exact finite-sample control of E[V] is difficult in general. But we provide
a simple answer under some simplifying assumptions.

Theorem 10.1. Assume that the distribution of {1(j € S(A)}), j € S§} is exchange-
able for all A € A. Also, assume that the original selection procedure is not worse
than random guessing, i.e.,

E|Soﬂ§,\|) > |S0|
E(IS§N8Al) — IS5

. (10.5)

Then, the expected number V of falsely selected variables is bounded for Ty €
(1/2,1) by
I q

ElV —
[ ] 277:thr_1 p

(10.6)

A proof is given in Section 10.7. The exchangeability condition is a restrictive as-
sumption and we discuss it in more detail in Section 10.3.1.3. The expected number
of falsely selected variables is sometimes called the per-family error rate (PFER) or,
if divided by p, E[V]/p is the per-comparison error rate (PCER) in multiple testing
(Dudoit et al., 2003). Note that Theorem 10.1 does not require a beta-min condition
(see Section 7.4) because the theorem only makes a statement about false positive
selections (while a beta-min condition is needed to avoid false negatives).

For fixed A, the threshold value 7y, is the tuning parameter for stability selection.
We propose to fix this value via the PFER control E[V] < v where V is specified
a-priori. Note that this fits into the commonly used framework of fixing type-I error
control beforehand. For example, when choosing v = «, a small number such as
o = 0.05, then E[V] < a implies

PV>0<a (10.7)

which says that the familywise error rate, i.e. the probability of at least one false
positive selection, is conservatively controlled at level o.. We leave the derivation of
(10.7) as Problem 10.1.

Given v, we can then solve for the tuning parameter:
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2 42
if g3 < pv: mne = (14 p—Av)/z, (10.8)

and if ¢4 > pv, we cannot control the error E[V] with the formula appearing in The-
orem 10.1. To use (10.8), we need knowledge about g4 . This can be easily achieved
by regularizing the selection procedure in terms of the number ¢ of selected vari-
ables: we then write S’q and obviously, \S’q| = gq. For example, with the Lasso in (2.2),
the number ¢ may be given by the variables which enter first in the regularization
path when varying from a maximal value Ap,x to some minimal value Ay;,. Other
examples are described below. The choice of the value ¢ is not very important as
long as we select it within a reasonable range. In absence of any idea how to choose
g, we can use formula (10.8) in the other direction. We can take a default stability
threshold parameter, say 7y, = 0.9, and then solve for g

q= vV VvpQ2am—1)]

As discussed above, we can either fix the regularization region A and then choose
T such that E(V) is controlled at the desired level; or vice-versa, we fix the stabil-
ity threshold 7y, and choose A.

Choosing less variables (reducing g4 ) or increasing the threshold my,, for stabil-
ity selection will, unsurprisingly, reduce the expected number of falsely selected
variables, with an achievable non-trivial and rather “minimal” value for the PFER
E[V] < 1/p when using my,, = 1 and having g4 = 1. This seems low enough for all
practical purposes as long as say p > 10.

Without stability selection, the regularization parameter A depends on the unknown
noise level of the observations. The advantage of stability selection is that exact
error control is possible, and the method works fine even though the noise level is
unknown.

10.3.1.1 Pointwise control

For some applications, in particular beyond variable selection in linear models, eval-
uation of subsampling replicates of S(l) can be computationally very demanding
for a single value of A. If this single value A is chosen such that some overfitting
occurs and the set S(1) is too large, in the sense that S(A) D Sy with high proba-
bility (see Section 2.5), the approach as above can be used with A = {1} being a
singleton. Results typically do not depend strongly on the utilized regularization A.
See the example for graphical modeling in Section 13.4.1. Setting A = {1}, one can
immediately transfer all results above to the case of what we call here pointwise con-
trol. For methods which select structures incrementally, i.e. for which S(A) C S(1/)
forall A > A/, pointwise control with A and control with A = [A,o0) are equivalent
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since ﬁ i(A) is then monotonically increasing with decreasing A forall j=1,...,p.
See Problem 10.2.

10.3.1.2 Examples of procedures choosing ¢ variables

We have discussed above that the error control using Theorem 10.1 requires knowl-
edge of the value gy = E[Sx ()], where Sp (I) = Uj xSy (I). Even with pointwise
control where A = {1}, the value g4 may be unknown. Trivially, g, is known for
variable selection procedures which select g variables: then g4 = g. We describe
now examples of procedures which select ¢ variables.

Consider the Lasso in (2.2) for arange A = [Amin, Amax] Of regularization parameters.
Define the Lasso-based procedure S’q selecting the g variables which enter first in the
regularization path when varying from the maximal value Ayax to the minimal value
Amin- Note that if there would be less than g active variables in the regularization path
over the range A, we would select all active variables and this number is bounded
by ¢ which is sufficient for the error control in Theorem 10.1.

Alternatively, consider the Lasso in (2.2) for a singleton A = {1}. We then have
an estimated active set S‘(?L) Define Sq as the procedure selecting the g variables
from $ (1) whose regression coefficients are largest in absolute values. Typically, we
would choose A such that [S(1)| > g¢. If there would be less than g active variables
in S(), we would select all active variables and this number is bounded by ¢ which
again is sufficient for the error control in Theorem 10.1.

Consider the LyBoosting procedure as described in Section 12.4.4 in Chapter 12. We
define Sq to include the first ¢ variables which arise during the boosting iterati0n§.
Similarly, we may use a forward selection algorithm, see Section 12.7. Then, S,
contains the first ¢ selected variables.

10.3.1.3 The exchangeability condition and the generality of Theorem 10.1

We remark that Theorem 10.1 applies to a very general range of discrete structure
estimation problems where inclusion or exclusion for individual features is possible.
Variable selection in linear and other models is of this type: a feature is then a
variable and each feature can be included (selected) or excluded (non-selected).
Another example is graphical modeling, as discussed in Chapter 13: a feature is
an edge between variables and each feature can be included or excluded. A third
example is clustering (Problem 10.3). Theorem 10.1 is valid for all these problems.

Due to the generality of Theorem 10.1, the involved exchangeability assumption is
perhaps stronger than one would wish, but there does not seem to be an easy way
of getting error control in the same generality without making similar assumptions.
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For example, Fan et al. (2009b) make use of a similar condition for error control in
regression.

In regression and classification, the exchangeability assumption is fulfilled for all
reasonable procedures S (which do not depend on the ordering of covariables) if the
design is random and the distribution of (¥,X (SO>,X (36)) is invariant under permu-
tations of variables in Sj. The simplest example is independence between each X ¥
and all other variables {X®); k € S} UY for each j € S6- Another example is as
follows.

Example 10.1. Consider a linear model as in (10.1) with random design and active

set So = {j; Bj #0}:

Y=XB+e, &€~ A,(0,6%Lxn),
the rows of X are i.i.d. ~ 4,(0,X),
Zj_j:(rzforallje {1,...,p},
X=Xy forall j ke Sy, £ e€Sp.

Then, the distributions of (¥,X50) {x(/); j € §51) and of (¥,XS0) {x(*1); j e
SG}) are the same for any permutation 7 : S§ — S{j (Problem 10.4). Therefore, the
exchangeability condition holds for any procedure S which is invariant under re-
ordering of the covariates.

A special case is equicorrelation with X =p (j#k)and Z; ;=1 (j=1,...,p).
For 0 < p < 1, the irrepresentable condition (see Sections 2.6 and 7.5.1) holds (for
some 0 < 6 < 1 depending on p and sp), see Problem 2.4 and Problem 6.14. For p <
0, the irrepresentable condition can fail: an example is with p > 3 and —1/(2s0 —
1)>p>—1/(p—1) (Problem 10.4). Thus, this is a very special example where
the exchangeability condition holds but the irrepresentable condition fails. However,
we then must have syo > p/2 which excludes all high-dimensional scenarios due to
failure of sparsity.

It appears that the exchangeability condition (for say the Lasso) exhibits at least
the same degree of restrictiveness as the irrepresentable condition described in Sec-
tion 2.6 and Section 7.5.1. For example, in case of no noise and if the problem is
identified, the exchangeability condition (roughly) implies that either none or all of
the noise variables are selected (“roughly” means here that the randomness of the
covariates is neglected). In the former case and for the Lasso, this implies that the
irrepresentable condition must hold (necessity of the condition, see Theorem 7.1,
part 2). In the latter case, when all noise variables are selected, the “not worse than
random guessing” condition (10.5) may not hold and also formula (10.6) becomes
extremely loose since ¢ = |S5> = (p — s0)? is (typically) large relative to p. For
real data, we have no guarantee that the exchangeability assumption is fulfilled but
some numerical examples in Section 10.4 show that the bound from Theorem 10.1
holds up very well.
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10.4 Numerical results

We consider here the performance of stability selection on semi-synthetic data sets.
We use real data design matrices X and build synthetic data, according to a lin-
ear model, by generating regression coefficients f8; (j = 1,...,p) and random er-
rors €r,...,&, ii.d. JV(O,GZ). Since the design is from real data, we call it semi-
synthetic data.

We use the following real data-sets for the design. The first one is from motif regres-
sion with p = 660 and n = 2587. For a brief description and motivation about motif
regression, we refer to Sections 2.5.2 and 2.8.5.1. The real-valued predictor covari-
ates are abundance scores for p candidate motifs (for each of the genes). Our data set
is from a heat-shock experiment with yeast. In addition, we consider the riboflavin
production data set, described in Section 9.2.6: here, we use data with p = 4088 and
n = 158. We generate sparse regression coefficients ; i.i.d. Uniform([0, 1]) and the
size of the active set is varied with s¢ taking 16 different values between 4 and 50.
We choose error variances 67 to achieve signal to noise ratios (SNRs) in {0.5,2}.
In total, there are 64 scenarios.

We then test how well the error control of Theorem 10.1 holds up for these semi-
synthetic data-sets. We are interested in the comparison between the cross-validated
solution for the Lasso (without stability selection) and stability selection using the
Lasso. For stability selection, we chose g = 1/0.8p (the first ¢ variables entering the
regularization path, see Section 10.3.1) and a threshold of 7y, = 0.6, corresponding
to a control of E[V] < 2.5, where V is the number of wrongly selected variables.
The control is mathematically derived under the assumption of exchangeability as
described in Theorem 10.1. This assumption is most likely not fulfilled for the given
real data designs and it is of interest to see how well the error bound holds up for
our semi-synthetic data. The results are shown in Figure 10.3. In comparison to the
Lasso with cross-validated Acy, stability selection reduces the number of falsely
selected variables dramatically, while maintaining almost the same power to detect
relevant variables. It is no surprise that the Lasso selects too many noise covariates,
as discussed in Section 2.5.1 (see also Chapter 7, Section 7.8.3). The number of
falsely chosen variables is remarkably well controlled at the desired level, giving
empirical evidence that the derived error control is useful beyond the discussed set-
ting of exchangeability. Stability selection thus helps to select an appropriate amount
of regularization such that false positive selections are under control.

The variables selected from stability selection can be refitted by e.g. least squares
estimation, and we can then compare its prediction error with the Lasso. So far,
there is no systematic study (empirical or theoretical) for this. Shawe-Taylor and Sun
(2010) present a real-data medical example consisting of n = 1842 subjects and p =
793 covariates (six classical risk factors and 787 single-nucleotide polymorphism
genotype features): they report that stability selection with refitting (using the Lasso)
is only slightly worse in terms of prediction than the Lasso while the former yields
a much sparser model fit.
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Fig. 10.3 Comparison of stability selection with cross-validation. The cross-validated solution (for
standard Lasso) is indicated by a dot and the corresponding stability selection by a red triangle,
showing the average proportion of correctly identified relevant variables versus the average number
of falsely selected variables. Each pair consisting of a dot and triangle corresponds to a simulation
setting (some specified SNR and sp). The broken vertical line indicates the value at which the num-
ber of wrongly selected variables is controlled, namely E(V) < 2.5. Looking at stability selection,
the proportion of correctly identified relevant variables is very close to the CV-solution, while the
number of falsely selected variables is reduced dramatically. The figure is taken from Meinshausen
and Biihlmann (2010).

10.5 Extensions

As written in Section 10.3.1.3, stability selection can be applied in many other dis-
crete structure estimation problems. We demonstrate its use also in Section 13.4.1
in Chapter 13, in the context of estimating an undirected conditional independence
graph.

10.5.1 Randomized Lasso

An interesting aspect is that stability selection with the original procedure alone
yields often substantial improvements already in terms of false positive selections
while maintaining power for detection of true structures. Moreover, adding some
extra sort of randomness can lead to further gains.

Randomized Lasso is a generalization of the Lasso which uses a weighted /;-norm
penalty
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P
Y WilBjl,
j=1

where W; are positive weights discussed in more detail below. The randomized
Lasso estimator is then defined as

N P
ﬁrandom(l) = argénin(HY —XﬁH%/l’l—f—l Z Wjﬁj)' (10.9)
J=1

Thus, this is a weighted Lasso procedure, like e.g. the adaptive Lasso in Section 2.8
in Chapter 2, and it is of the form appearing also in Section 6.9 in Chapter 6 and in
Chapter 7. The weights W; here, however, are chosen at random with no relation to
the data. We generate

Wi, ..., W, ii.d. with values in the range [y,1] (0 <y < 1),

and Wy,..., W, are independent of the data (X;,Y1),...,(X,,Y,). Concretely, we can
generate the weights from a two-point distribution

Wj € {% 1}7 P[Wj = Y] = 1/27

and y € (0,1) is called the weakness parameter. The word “weakness” is borrowed
from the terminology of weak greedy algorithms (Temlyakov, 2000) which are
loosely related to the randomized Lasso. In practice, choosing 7y in the range of
(0.2,0.8) gives very useful results.

The penalty weights are simply chosen at random. Thus, the implementation is very
straightforward by appropriate re-scaling of the predictor variables. An exact de-
scription is given in Section 2.8.4.

However, purely random weights in the penalty seem to be nonsensical at first sight
since one cannot expect any improvement from such a random perturbation. If ap-
plied only with one random perturbation, randomized Lasso is not very useful. But
applying randomized Lasso many times and looking for variables that are chosen
often, analogously as with stability selection in (10.4) is a very powerful procedure.
In particular, randomized Lasso can be combined with subsampling observations.

Meinshausen and Bithlmann (2010) show that randomized Lasso, in conjunction
with stability selection, can bring further empirical improvements over stability se-
lection with the plain Lasso procedure. We remark that this finding is loosely related
to empirical results about Random Forest (Breiman, 2001).
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10.6 Improvements from a theoretical perspective

It is shown in Meinshausen and Biihlmann (2010) that randomization is beneficial
to achieve variable selection consistency under weaker conditions than what the
non-randomized procedure necessarily needs, at least for the case of Lasso and for
orthogonal matching pursuit which is briefly described in Section 12.7.1 in Chapter
12.

When using the Lasso in (2.2), Section 2.6 discusses that the neighborhood stability
or irrepresentable condition, a rather restrictive assumption on the design, is neces-
sary and sufficient for variable selection consistency, saying that

P[S(A) = So] = 1 (n — o).

Meinshausen and Biihlmann (2010) prove that the randomized Lasso, applying
(10.9) many times and computing relative selection frequencies as in (10.4), is
consistent for variable selection under a sparse eigenvalue condition on the design
which is weaker than the irrepresentable condition. The details are as follows.

Definition 10.1. (Sparse eigenvalues) For S C {1,...,p}, B € R?, let Bs be defined
as Bjs:=Bl(j €S) (j=1,...,p). Denote by £ = n~'XTX. The minimal sparse
eigenvalues are then defined for s < p as

BS £Bs

2 = n .
is|=s:perr || Bs]|3

Amin (S)

Analogously, for the maximal sparse eigenvalues:

IEBs
Ax%lax(s) = Sup S 2
isl=s:8err || Bsll3

Sparse eigenvalues are related to the compatibility condition and restricted eigen-
values as discussed in Sections 6.13.5 and 6.13 in Chapter 6, and see also Section
7.5.4 in Chapter 7. The assumption in Meinshausen and Biihlmann (2010) is: there
exists some C > 1 and some Kk > 9 such that

Amax (Cs}
w <VC/x, so=18. (10.10)
Amin (CSO)
Furthermore, the non-zero regression coefficients need to be sufficiently large, i.e.
fulfill a beta-min condition (see also Section 7.4),

min{|BY]: 1< j < p, BY #0} > Dosy/*\/log(p)/n, (10.11)

where D > 0 is a constant depending on C in the sparse eigenvalue condition (10.10)
and o denotes the error variance.
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When comparing to variable selection consistency with for example the adaptive
or thresholded Lasso as discussed in Section 7.9 from Chapter 7, we see that the
conditions in (10.10) and (10.11) are more restrictive (bound on sparse eigenvalues
imply bounds on restricted eigenvalues, see Sections 6.13.5 and 6.13 in Chapter 6).
In addition, under the conditions above, the Lasso has reasonable variable selection
properties with |S a0 \ So| = O(s0), see Lemma 7.3 in Section 7.8.3. We also note
that (10.11) might be an unrealistic assumption: without such a condition, we cannot
detect small regression coefficients (but e.g. the Lasso will still select all variables
whose regression coefficients are “large” in absolute value), see also at the end of
Section 2.6 in Chapter 2.

We conclude that from a theory perspective, the randomized Lasso or stability se-
lection are not doing any better than say the adaptive Lasso or even the Lasso itself
(when taking the view that O(sp) false positive selections are acceptable). In fact,
the theory for variable selection with the adaptive Lasso is based on weaker assump-
tions than what is described above. This may be due to the fact that the analysis in
Meinshausen and Biithlmann (2010) is for a randomized algorithm and much more
coarse than for the adaptive Lasso. However, the result on consistent variable se-
lection with the randomized Lasso is of interest as it indicates that randomization
can actually improve the procedure in the sense that it is valid (i.e. consistent) for a
wider class of problems than the non-randomized method.

10.7 Proofs

10.7.1 Sample splitting

An alternative to subsampling is sample splitting. Instead of observing whether a
given variable is selected for a random subsample, one can look at a random split of
the data into two non-overlapping samples of equal size |n/2] and see whether the
variable is chosen in both sets simultaneously.

Let /; and I, be two random subsets of {1,...,n} with |I;| = || = |n/2] and I} N
I, =0 (and when n is even, I} Ul = {1,...,n}). Define the simultaneously selected
set as the intersection of S, (1;) and S (1),

Simultd — $, (1) NSy (B).

Define the simultaneous selection probabilities for any set K C {1,...,p} as
ﬁ[%imult(l) — P* [K g Swsimull,l]’ (10 12)

where the probability P* is with respect to the random sample splitting.
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Stability selection as defined in Section 10.3 works with the selection probabilities
based on subsampling but the following lemma lets us convert these probabilities
into simultaneous selection probabilities based on sample splitting. The latter is used
for the proof of Theorem 10.1. The bound is rather tight for selection probabilities
close to 1.

Lemma 10.1. For any set K C {1,...,p}, a lower bound for the simultaneous se-
lection probabilities is given by

TT™IY Q) > 200 (L) — 1. (10.13)

The inequality holds for every realization ® (of the n original data points) in the
underlying probability space €.

Proof. Let I; and I, be the two random subsets from a sample split of {1,...,n}
with |I1| = || = |n/2] and I; NI, = 0. Denote by sk ({1,1}) the probability

P{K C 8, (1)} n{K C $,(L)}].

Note that the two events are not independent as the probability is only with respect
to a random split of the fixed samples {1,...,n} into /; and L. The probabilities
sk ({1,0}), sK({O 1}),5x({0,0}) are deﬁned equivalently by P*[{K C Sy ()} N
{KgZS,l 12 ] P* {KSZSJL I }ﬂ{KCSx(IQ)}] and P* {K;(_Sx I }ﬁ{Kg_
S5 (I)}], respectively. Note that ITH™(1) = sk ({1,1}), sk({1,0}) = sx({0,1}),
and hence

TIg(2) = sx({1,0}) + sk ({1,1}) = sk ({0, 1}) + sk ({1,1})
1_ﬁK()‘) = SK({Ovl})+SK({O7O}) :SK({17O})+SK({O7O})'

As sx({0,0}) > 0, it also follows that sx({1,0}) < 1 —IIx(1). Hence
™ (2) = sk ({1,1}) = Ik (A) = sx ({1,0}) = 2ITk (A) — 1,

which completes the proof. |

10.7.2 Proof of Theorem 10.1

The proof uses mainly Lemma 10.2 below. We first show that P(j € Si A) < 4qa/p
for all j € S§, using the made definitions Sy = Uy, S; and gx = E[|S4 |]. Define
furthermore S§(A) = S5 N S to be the set of noise variables (in S6) which appear in
S4 and analogously U = SNS4. The expected number of falsely selected variables
can be written as

E[IS§(A)[] = E[ISa]] = EllUAl] = g4 — E[|UA]]-
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Using the assumption (10.5) (which asserts that the method is not worse than ran-
dom guessing), it follows that E[|Uy || > E[|SG(A)]]|S|/[S§|. Putting together,

(L+ISI/1SoDE(ISH(A)] < ga

and hence |S§|'E[|S5(A)|] < ga/p. Using the exchangeability assumption, we
have P[j € S] = E[|S5(A)[]/|S§| for all j € S§ and hence, for j € S, it holds that
P(j €84) < qa/p. as desired. Note that this result is independent of the sample size
used in the construction of $3, A € A. Now using Lemma 10.2 below, it follows that
P[maxj <, Ij}?im““(l) > &)< (qa/p)?/& forall0 < & < 1and j € S§. Using Lemma
10.1, it follows that

Plmax IT;(A) > ] < P[(mélXﬁiim"“(l) +1)/2 2 ] < (9a/P)?/ (270 — 1)

AeA AeA
Hence
E[V] =} PmaxIL;(A) > mi] < g4 /(pQ27ine 1)),
F—QC AEA
JES
which completes the proof. O

Lemma 10.2. Let K C {1,...,p} and S, the set of selected variables based on a
sample size of |n/2].

IfPK C S, < e, then P[IT{™ > ] < £2/E.

IfP[K C Uy cpSy] < € for some A CRY, then Plmax o, ITEMIY(A) > E] < 2/E.

Proof. LetI;,I, C{1,...,n} be, as above, the random split of the samples {1,...,n}
into two disjoint subsets, where both |;| = |n/2| for i = 1,2. Define the binary
random variable H}: for all subsets K C {1,...,p} as

HE =I1{K C{$; ()N Sy (1)}},

where 1(-) denotes the indicator function. Denote the data (the n samples) by Z.
The simultaneous selection probability ITE™(1), as defined in (10.12), is then
ITimt (L) = B*(H}) = E(H}|Z), where the expectation E* is with respect to the
random split of the n samples into sets /; and I, (and additional randomness if S, is
a randomized algorithm). To prove the first part, the inequality P[K C S, (L)) <e
(for a sample size [n/2]), implies that P[H} = 1] < P[K C 8, (I))]*> < &€ and
hence E[H{] < €. Therefore, E[Hg| = E[E[Hg |Z]] = E[ITi™"(1)] < €. Us-
ing a Markov-type inequality, EP[IIi™!(1) > &] < E[II[i™!(1)] < €. Thus
P[ITI™IY(1) > &] < €2/&, completing the proof of the first claim. The proof of
the second part follows analogously. O
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Problems

10.1. Prove formula (10.7) by showing
P[V > 0] <E[V].

In addition, describe in words why the inequality above may be very coarse.

10.2. Consider a variable selection method (e.g. in a linear model) having the mono-
tonicity property S(1) C S(A’) for all L > A’. Show that pointwise control with A
and control with A = [A,0) are equivalent.

10.3. Consider the problem of clustering n observations X, ..., X, into k different
clusters 41,...,%; with €; C {1,...,n}, U’}zl%j ={1,...,n} and €;N€; = 0 for
i # j. Show that membership of observations to the same cluster can be encoded by
a graph (define the nodes and edges) and formulate selection and stability selection
for the problem of clustering.

10.4. Exchangeability condition
Consider Example 10.1.
(a) Show that the distributions of

(v,x50) {xU); jes§}) and of (v,x50) {xT); j e g61)

are the same for any permutation 7 : S§ — Sg.

(b) Consider the case of equicorrelation. Show that the irrepresentable condition
fails for p > 3,59 > p/2 with —1/(2s0—1) >p > —1/(p—1).

Hint: Use that for equicorrelation with Z; ; =1 (j=1,...,p), Zjx = p (j # k), the
inverse is given by

a_ by p
R R e

See also Problem 2.4 and Problem 6.14.

th), 1= 101 = (1,1,...,1).

10.5. Instead of stability selection as in (10.4), we can use the simultaneous selec-
tion probabilities from (10.12) and define

gsimult __ g -, Arsimult simult
Sstable - {J’ I{lgfnf (l) 2 Tthr }

Derive an error control in terms of E[V] as in Theorem 10.1, but now for Ssimult anqg
using nfﬁ;nuh (i.e. the analogue of (10.6)).
Hint: use Lemma 10.1 and adapt the proof of Theorem 10.1 in Section 10.7.2.



Chapter 11

P-values for linear models and beyond

Abstract In the classical low-dimensional setup, error control of false selections
based on p-values is a widely used standard in many areas of sciences. In the high-
dimensional setting, assigning significance is challenging. Most computationally
efficient selection algorithms cannot guard against inclusion of noise variables and
hence, some thresholding operation on the basis of p-values for individual regression
coefficients is desirable. We describe in this chapter a rather generic way to achieve
this goal. Using multiple sample splitting, which is very simple to implement and
bears similarities to subsampling and stability selection from Chapter 10, we show
that such a random sampling scheme yields asymptotically valid p-values for con-
trolling the familywise error or false discovery rate in high-dimensional linear or
generalized linear models.

11.1 Organization of the chapter

We largely focus on assigning p-values for regression coefficients in linear mod-
els. After introducing the sample splitting method, we discuss in detail in Section
11.3 the much better multi sample splitting approach which has been originally
proposed and studied in Meinshausen et al. (2009). Thereby, we describe p-values
which achieve asymptotic error control for either the familywise error or the false
discovery rate. Numerical illustrations are shown in Section 11.5 and consistent
variable selection based on thresholding with p-values is discussed in Section 11.6.
Extensions to other models and other error measures are discussed in Section 11.7.
The technical proofs are collected in Section 11.8.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 359
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 11,
© Springer-Verlag Berlin Heidelberg 2011
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11.2 Introduction, sample splitting and high-dimensional
variable selection

Constructing p-values belongs to the problem of quantifying uncertainty of esti-
mators. In Chapter 10, we described an approach based on subsampling to assign
uncertainty. In contrast to Theorem 10.1 for stability selection we show here that
p-values for high-dimensional regression problems can be constructed under much
weaker assumptions on the design than the exchangeability condition. While the
main application of the p-value procedure is high-dimensional data, where the num-
ber p of variables can greatly exceed sample size n, we illustrate empirically that
the method is also quite competitive in comparison to more standard error control
for n > p settings, indeed often giving a better detection power in the presence of
highly correlated variables.

We consider the high-dimensional linear model similar to (10.1) from Chapter 10:
Y=Xp+e,

but here with fixed design and Gaussian errors €1, ..., €, i.i.d. ~.4(0,02). Exten-
sions to other models are outlined in Section 11.7.

Denote by
So = {j: B} #0}

the set of active variables, where B denotes the true parameter vector, and similarly
by S§ = {J: B;j = 0} the set of noise variables. Our goal is to assign p-values for the

null-hypotheses Hy ; : B; =0, versus the
alternatives Hy ; : B; # 0,

forall j=1,..., p. The modification to one-sided alternatives is straightforward but
not treated in this chapter.

An approach proposed by Wasserman and Roeder (2009) is to split the data into two
parts, reducing the dimensionality to a manageable size of predictors (keeping the
important variables with high probability) using the first half of the data, and then to
assign p-values and making a final selection using classical least squares estimation
based on the second part of the data. The procedure of Wasserman and Roeder
(2009) attempts to control the familywise error rate (FWER) which is defined as
P[V > 0], the probability of making at least one false rejection where V denotes the
number of false selections (i.e. false positives).

The data are split randomly into two disjoint sets I}, C {1,...,n} with |[}]| =
|n/2], b =n—|n/2], 1N =0 and hence I; UL = {I1,...,n}. Thus, the cor-
responding data sub-samples are (X;,,Y;,) and (X;,,Y},). Let S be a variable se-
lection or screening procedure. We denote by S (IT) the set of selected predictors
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based on (Xj,, Yy, ) which may include the choice of potential tuning or regulariza-
tion parameters. A prime example for variable selection or screening is the Lasso
in (2.2) but other methods such as boosting or forward selection from Chapter 12
could be considered as well. The regression coefficients and the corresponding p-
values P , ... ,f’p of the selected predictors are determined based on the other half of
the data (X,,Yy,) by using ordinary least squares estimation and the corresponding
t-tests on the set of variables from S(1;) and setting P; = 1 for all j ¢ S(I,), i.e.,

P — {Prawd- based on Y127X12,§(11) ,if j € §(I]),
T Jif j ¢ S(),

where Py, j is the p-value from the two-sided z-test, using least squares estimation,
for Hy j (based on the second half of the data I, and using only the variables in S(/; ).
If the selected set of variables contains the true model Sy, i.e.

(11.1)

S(1) 2 So,

the p-values P; are controlling the (single testing) type I error, assuming Gaussian
errors £ and rank(X,, ¢ )) = |S(/1)|. Regarding the latter, X 5, is the design
sub-matrix with rows corresponding to > and columns corresponding to S(I; ). The
assumption on the rank is most often fulfilled if |S(/;)| < n/2. Finally, each p-value
P; is adjusted by a factor |S(I;)| to correct for the multiplicity of the testing problem:

Poorr.j = min(P;-|S(1)[,1) (j=1,...,p). (11.2)

Assuming the conditions (11.3) and (11.4), the p-values in (11.2) control the fami-
lywise error rate (Problem 11.2). The conditions we need are:

lim P[S|,,/2 2 So] = 1. (11.3)
Furthermore, we assume
J%P[\ﬁtn/zj| <n/2]=1. (11.4)

Here, S, denotes any variable selection procedure based on m observations. Some
discussion about these conditions is given below. Of course, if (11.3) and (11.4)
hold, they also hold for S(I;). For any subset Loy CA{1,...,n} with [[,)| =m =
n—[n/2]. let E(I) = m’1X,T(m)X1(m). Furthermore, we denote by £(/,,)s.s the
S| x | S| sub-matrix corresponding to rows and columns of the subset S C {1,...,p}.
We assume:

Amin(£(Iimy)s.s) >0 for all S with |S| <n/2,
for all /) with |I,,)| =m=n—[n/2],  (11.5)
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where A%in (A) denotes the minimal eigenvalue of a symmetric matrix A. The con-
dition in (11.5) is related to a sparse eigenvalue assumption, see Sections 6.13.5 and

10.6, but we do not require here a uniform positive lower bound.

For the Lasso, the screening property in (11.3) holds assuming a compatibility con-
dition on the design, sparsity and a beta-min condition requiring sufficiently large
(in absolute value) non-zero regression coefficients, see Corollary 7.6 in Chapter 7,
and (11.4) is always true as described in Chapter 2, Section 2.5. The beta-min as-
sumption about large non-zero regression coefficients might be unrealistic in prac-
tice: but without such a condition, we cannot detect small regression coefficients,
see also at the end of Section 2.6 in Chapter 2, Section 7.4, and we also refer to
Leeb and Potscher (2005). Relaxation of (11.3) to some degree should be possible
in order that the methods in this chapter for constructing p-values would still work.
Other examples where (11.3) holds, assuming suitable conditions on the design and
sufficiently large (in absolute value) non-zero regression coefficients, include the
adaptive Lasso from Section 2.8 in Chapter 2, L, Boosting described in Section
12.4.4 in Chapter 12, orthogonal matching pursuit (Section 12.7.1 in Chapter 12)
or Sure Independence Screening (Fan and Lv, 2008) (Section 13.9.5 in Chapter
13). The assumption in (11.4) is a sparsity property: if the true active set Sy has
cardinality less than n/2, fulfillment of (11.3) and (11.4) is possible (assuming in
addition a beta-min and a design condition). Finally, (11.5) is a mild condition on
the design since m = [I,,)| > n/2 and the cardinality of the sets |S| < n/2: that is,
the subsample size m is larger than the number of variables in S and thus, requiring
positive definiteness (not with a uniform lower bound for the minimal eigenvalue) is
not very restrictive. A violation of the sparsity property (11.4) or (11.5) would make
it impossible to apply classical z-tests on the retained variables from 5(11).

To formalize the control of the familywise error rate, we introduce some notation.
The selected model is given by all variables for which the adjusted p-value in (11.2)
is below a significance-cutoff o € (0, 1):

Ssingle—split FWER (@) = {J; Peorr,j < 0t} (11.6)
We denote the number of false positives (false selections) by
Viingle—split FWER (&) = | Ssingle—split Fwer (06) NS
Then, we have the following results.

Lemma 11.1. Consider the linear model as in (10.1) with fixed design and Gaussian
errors & ~ JV(O,GZ). Assume that (11.3), (11.4) and (11.5) hold. Then, for any
O<a<l:

lim sup P[Viingle—spiic Fwer () > 0] < a.
n—soo

Proof. Consider the event A, = {S;, 2 So} N {|Sy,| < n/2}. By (11.3) and (11.4)
we know that P[A,] — 1 (n — o). Furthermore, on A,, the p-values Proy j in (11.2)
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control the familywise error rate, due to the fact that the data from /, are independent
from the data in /;, and because of the Gaussian assumption and (11.5) which ensure
validity of the classical ¢-tests (Problem 11.2). Note that the Bonferroni correction
factor in (11.2) is sufficient on A,, because we know that all variables which are not
elements of 5'11 must be noise variables from S5, due to (11.3). O

The single data-splitting method for the p-values in (11.2) is easy to implement. It
relies, however, on an arbitrary split of the data into /; and I,. Results, at least for
finite samples, can change drastically if this split is chosen differently. This in itself
is unsatisfactory since results are not reproducible, as illustrated in Figure 11.1, see
also Problem 11.1.

80
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ADJUSTED P-VALUE

Fig. 11.1 Histogram of adjusted p-values P, ; for a single variable in the motif regression ex-
ample of Section 2.5.2 with n = 287 and p = 195: the different p-values correspond to different
random splits of the data into /; and ;. Due to the high variability, we call the phenomenon a
“p-value lottery”. The figure is taken from Meinshausen et al. (2009).

11.3 Multi sample splitting and familywise error control

An obvious alternative and improvement to a single arbitrary sample split is to di-
vide the sample repeatedly. For each split we end up with a set of p-values as in
(11.2). It is not obvious, though, how to combine and aggregate these p-values from
multiple sample splits. A possible solution has been worked out in Meinshausen
et al. (2009).

For each hypothesis Hy ;, a distribution of p-values is obtained for multiple ran-
dom sample splitting. We will show that error control can be based on the quantiles
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of this distribution. In contrast to the “p-value lottery” phenomenon illustrated in
Figure 11.1, the multi sample split method makes results reproducible, at least ap-
proximately if the number of random splits is chosen to be sufficiently large (in
our presented theory, the number of random splits is fixed though). Moreover, we
will show empirically that, maybe unsurprisingly, the resulting procedure is more
powerful than the single-split method, see Section 11.5.

The multi sample split method is defined as follows:
Forb=1,...,B:

1. Randomly split the original data into two disjoint groups I ](b) and Igb] of (almost)
equal size.

2. Using only Il[b], estimate the set of active predictors S} = 5‘(11[17]).

3. Using only 7 [b], compute the adjusted (non-aggregated) p-values as in (11.2), i.e.,
50 . =] ja .
P = min(P 18P, 1) (j=1,....p)

where ~[b] is based on the two-sided ¢-test, as in (11.1), based on Iz[h] and SI) =
b)
s

pll

corr,j» s discussed next.

Finally, we aggregate over the B p-values P,

11.3.1 Aggregation over multiple p-values

The procedure described above leads to a total of B p-values for each covariate

]

orr, j

the indices b=1,...,B. This can be done using quantiles. For y € (0, 1) define

j=1,...,p.Foreach j=1,...,p, the goal is to aggregate the p-values PC[ over

0;(y) = mln{qy({ BY Jyib= ..,B})J}, (11.7)

where ¢,(-) is the (empirical) y-quantile function.

A p-value for each variable j =1,..., p is then given by Q;(7), for any fixed 0 < y <
1. We will describe in Section 11.3.2 that this is an asymptotically correct p-value
for controlling the familywise error rate.

A proper selection of ¥ may be difficult. Error control is not guaranteed anymore if
we search for the best value of y. But we can use instead an adaptive version which
selects a suitable value of the quantile based on the data. Let Yy, € (0, 1) be a lower
bound for 7, typically 0.05, and define
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Pj:min{(l—logymin) inf Q,-(}/)J}(j:l,...,p). (11.8)

'J/e('yminvl)

The extra correction factor 1 — log ¥min ensures that the familywise error rate re-
mains controlled despite of the adaptive search for the best quantile, as described in
Theorem 11.1 in Section 11.3.2. For the recommended choice of ¥, = 0.05, this
factor is upper bounded by 4; in fact, 1 —1og(0.05) ~ 3.996.

Figure 11.2 takes up again the example from Figure 11.1 to illustrate the differ-
ence between the single sample split and the multi sample split method. The left

panel contains the histogram of the adjusted p-values Pc[l;]rr‘ jforb=1,....Bofa
particular (selected) variable j of a motif regression problem using a linear model
with n = 287 and p = 195, as described in Section 2.5.2. The single sample split
method is equivalent to picking one of these p-values randomly and selecting the
variable if this randomly picked p-value is sufficiently small, say less than a sig-

nificance level ¢. To avoid this “p-value lottery”, the multi sample split method

computes the empirical distribution of all p-values F’C[?m jforb=1,...,B and re-
jects the null hypothesis Hp ; : B; = 0 if the empirical distribution crosses from
above the broken line in the right panel of Figure 11.2. A short derivation of the
latter is as follows. Variable j is selected if and only if P; < a, see (11.8). Us-
ing Ymin = 0.03, this happens if and only if there exists some ¥ € (0.05,1) such

that Q;(y) < /(1 —10g0.05) = &/3.996. Equivalently, using definition (11.7), the

Y-quantile of the adjusted p-values, q},({PC[gL j}b), has to be smaller than or equal

to ay/3.996. This in turn is equivalent to the event that the empirical distribution

of the adjusted p-values {sz]rr_ I b =1,...,B} is crossing from above the bound

f(p) =max{0.05,(3.996/c)p} for some p € (0,1). This bound is shown as a bro-
ken line in the right panel of Figure 11.2.

11.3.2 Control of familywise error

The resulting adjusted p-values P; (j =1,...,p) from (11.8) can be used for both
familywise error (FWER) and false discovery rate (FDR) control. For FWER control
atlevel @ € (0,1), simply all p-values below o are rejected and the selected subset
is

Smutti—split Fwer (@0) = {j : P < &} (11.9)

Denote by Vinutti—split FWER (©) = |Smulii—split FWER (@) NS§| the number of false pos-
itive selections.

Theorem 11.1. Consider a linear model as in (10.1) with fixed design and Gaussian
errors and assume that (11.3), (11.4) and (11.5) hold. Furthermore, the number B
of random splits in the multi-split method is fixed. Then, for any Ymin € (0,1) (see
(11.8)),
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Fig. 11.2 Left: a histogram of adjusted p-values P[ ] ; for a single variable in the motif regression
example of Section 2.5.2 with n =287 and p = 195 ThlS is the same plot as in Figure 11.1. The
single data split method picks randomly one of these p-values (a “p-value lottery”) and rejects
Hy ; if it is below o. For the multi data split method, we reject Hy,; if and only if the empirical
distribution function of the adjusted p-values crosses from above the broken line (which is f(p) =
max{0.05,(3.996/c)p}) for some value p € (0,1) on the x-axis. This bound is shown as a broken
line for o = 0.05. For the given example, the bound is indeed exceeded and the variable is thus
selected. The figure is taken from Meinshausen et al. (2009).

lim sup P[Vinuigi —spiit Fwer (@) > 0] < o
n—so0

A proof is given in Section 11.8. Instead of working with the adaptive p-values in
(11.8), we could use an empirical quantile Q;(y) from (11.7) for fixed 0 < y < 1.
We then define

SAmultifsplit FWER(al’Y) = {]» QJ(Y) < (X},

and define Vi split FWER(O‘W) mum split FWER(O‘W) N S‘ Then, the following
error control holds.

Proposition 11.1. Consider a linear model as in (10.1) with fixed design and Gaus-
sian errors and assume that (11.3), (11.4) and (11.5) hold. Furthermore, the number
B of random splits in the multi-split method is fixed. Then, for 0 < y < 1, and where

lim sup P[Viuii —spiic Fwer (@] 7) > 0] < .
n—so0

A proof is given in Section 11.8. Besides better reproducibility, the multi sample
split version is empirically found to be more powerful than the single split selec-
tion method (Section 11.5). Regarding asymptotic familywise error control, the pre-
sented theory does not allow for a distinction between the single split method (with
fixed B = 1) and the multi sample split procedure (with fixed B > 1).
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11.4 Multi sample splitting and false discovery rate

Control of the familywise error rate is often considered as too conservative. If many
rejections are made, Benjamini and Hochberg (1995) proposed to control instead
the expected proportion of false rejections, the false discovery rate (FDR). Let V =
Na SG| be the number of false rejections for a selection method S and denote by
R = |§] the total number of rejections. The false discovery rate is defined as the
expected proportion of false rejections

E[Q] with Q =V /max{1,R}. (11.10)

For no rejections with R = 0, the denominator ensures that the false discovery pro-
portion Q is 0, conforming with the definition in Benjamini and Hochberg (1995).

The original FDR controlling procedure in Benjamini and Hochberg (1995) first
orders the observed raw p-values as By (1) < Praw,(2) < - -+ < Praw,(p) and defines

k:max{izpraw)géq} 0<g<1). (11.11)

Then all variables or hypotheses with the smallest k& p-values are rejected and no
rejection is made if the set in (11.11) is empty. The FDR is controlled this way at
level g under the condition that all p-values are independent. It has been shown in
Benjamini and Yekutieli (2001) that the procedure is conservative under a wider
range of dependencies among p-values; see also Blanchard and Roquain (2008) for
related work. It would, however, require a big leap of faith to assume any such
assumption for our setting of high-dimensional regression. For general dependen-
cies, Benjamini and Yekutieli (2001) showed that control is guaranteed at level
qYl i ' ~q(1/2+1og(p)), see also Theorem 11.2.

The standard FDR procedure is working with the raw p-values, which are assumed
to be uniformly distributed on [0, 1] for true null hypotheses. The division by p in
(11.11) is an effective correction for multiplicity. The multi-split method in Section
11.3.1, however, is producing already adjusted p-values as in (11.8). Working with
multiplicity-corrected p-values, the division by p in (11.11) turns out to be super-
fluous. Instead, we can order the corrected p-values P; (j=1,...,p) from (11.8) in
increasing order P(l) < P(2> <...< P< P) and select the 4 variables with the smallest
p-values, where

h=h(q) = max{i: P; <iq}. (11.12)

The selected set of variables is denoted, with the value of & = h(g) given in (11.12),
by

Smutti—spiic FOR (4) = {J : P; < Pyg )

with no rejections and §muhi,spm ror(q) =0, if Py >iq foralli=1,...,p.
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This procedure will achieve FDR control at level

p

qY i ' ~q(1/2+1logp),
i=1

as discussed in Section 11.8.3. Thus, to get FDR control at level o € (0,1) we
define:

§multi—split rR(Q) ={j: P < P(h(q(tX)))}’

o
h=h(g(a)) asin (11.12), g(a) = s (11.13)
i=1!
We will show error control in the following section and demonstrate empirically in
Section 11.5 the advantages of the multi split version over both the single split and
standard FDR controlling procedures.

11.4.1 Control of false discovery rate

The adjusted p-values can be used for FDR control, as described above in Section
11.4. Let Smulti—split rpr () be the set of selected variables, as defined in (11.13).
DAGHOte by Vinutti—split FDR (€)) = [Smutti—sptit FOR (0¢) N SG| and Ryt —spiit FOR (0) =
|Smutii—sptit FDR (@¢)|. We then have the following result.

Theorem 11.2. Consider a linear model as in (10.1) with fixed design and Gaussian
errors and assume that (11.3), (11.4) and (11.5) hold. Furthermore, the number B
of random splits in the multi-split method is fixed. Then, for any Ymin € (0,1) (see
(11.8)),

limsupE[Q()] < a,

n—yoo
O(t) = Vinutti—split For (©) / max{1, Rpuisi—splic FOR () }-

A proof is given in Section 11.8. As with FWER-control in Section 11.3.2, we could
be using, for any fixed value of ¥, the values Q;(y) (j =1,...,p) in (11.7) instead
of P; (j=1,...,n) in (11.8). Then, the analogue of Proposition 11.1 also holds for
the FDR controlling procedure described above.
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11.5 Numerical results

In this section we consider the empirical performance of the p-value method in
conjunction with S from (versions of) the Lasso as a variable screening method. We
use a default significance value of & = 0.05 everywhere.

11.5.1 Simulations and familywise error control

We simulate data from a linear model,
-y
Y, = Zﬁfxi] +g(i=1,...,n),
Jj=1

where g1,...,¢, i.id. ~ .4(0,0%), with random design X, ...,X, iid A5(0,X)
and a sparse 3-vector with active set Sy and so = |Sp|. In each simulation run, a new
parameter vector f3 is created by either “uniform” or “varying-strength” sampling.
Under “uniform” sampling, so randomly chosen components of 3 are set to 1 and the
remaining p — so components to 0. Under “varying-strength” sampling, 5o randomly
chosen components of 3 are set to values 1, ..., so. The error variance ¢ is adjusted
such that the signal to noise ratio (SNR) is maintained at a desired level at each
simulation run (see Table 11.1). We consider two classes of scenarios with:

(A) n=100, p=100 and a Toeplitz covariance matrix X with X;; = pli=H,
(B) As (A) but with p = 1000.

For (A) and (B), we vary in each setting the SNR to 0.25, 1, 4 and 16, and the
number so of active variables is either 5 or 10; we fix the value of p = 0.5. Thus,
we consider for each setting (A) and (B) 16 different scenarios (4 different SNRs, 2
different sparsity values sy and 2 different sampling schemes for 3). We perform 50
simulations for each scenario.

As initial variable selection or screening method $ we use three approaches which
are all based on the Lasso. The first one, denoted by S‘ﬁxed, uses the Lasso and se-
lects those |n/6] variables which appear most often in the regularization path when
varying the penalty parameter. The constant number of [n/6] variables is chosen,
somewhat arbitrarily, to ensure a reasonably large set of selected coefficients on the
one hand and to ensure, on the other hand, that least squares estimation will work
reasonably well on the second half of the data with sample size n — |n/2]. The
second method Scy is more data-driven: it uses the Lasso with penalty parameter
chosen by 10-fold cross-validation and selecting the variables whose corresponding
estimated regression coefficients are different from zero. The third method, §adapt is
the adaptive Lasso, with the Lasso solution used as initial estimator for the adaptive
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Lasso, and where the regularization parameters are chosen based on 10-fold cross-
validation. The selected variables are again the ones whose corresponding estimated
regression parameters are different from zero. The number of random splits in the
multi sample split method is always chosen as B = 100.

The average number of true positives and the familywise error rate (FWER) for the
single and multi sample split methods are considered. Results are shown in Fig-
ure 11.3 with the default value Y, = 0.05 in (11.8). Using the multi sample split
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Fig. 11.3 Simulation results for setting (A) in the top and (B) in the bottom row. Average number
of true positives vs. the familywise error rate (FWER) for the single split method (“*S”) against the
multi-split version (“M”). FWER is controlled (asymptotically) at & = 0.05 for both methods and
this value is indicated by a broken vertical line. From left to right are results for Stixed> Scv and
.SA'adap‘. Results of a single scenario with specific values of (n, p), SNR and sparsity are joined by a
line, which is solid if the regression coefficients follow the “uniform” sampling and broken other-
wise. Increasing SNR is indicated by increasing symbol size. The figure is taken from Meinshausen
et al. (2009).

method, the average number of true positives (the variables in Sy which are selected)
is typically slightly increased while the FWER (the probability of selecting variables
in §3) is reduced sharply. The single sample split method has often a FWER above
the level o = 0.05 at which it is asymptotically controlled while for the multi sam-
ple split method, the FWER is above the nominal level only in few scenarios. The
asymptotic control seems to give a good control in finite sample settings with the
multi sample split method. The single sample split method, in contrast, selects in
nearly all cases too many noise variables, exceeding the desired FWER sometimes
substantially. This suggests that the error control for finite sample sizes works much
better for the multi sample split method yet with a larger number of true discoveries.
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11.5.1.1 Comparisons with adaptive Lasso

Next, we compare the multi sample split method with the adaptive Lasso described
in Section 2.8 in (2.8). We have used the adaptive Lasso previously as a variable
selection or screening method in the multi sample split procedure. But the adaptive
Lasso is often employed on its own and we use the same choices as previously: the
initial estimator is obtained as the Lasso solution with a 10-fold CV-choice of the
penalty parameter, and the regularization parameter in the adaptive Lasso penalty is
also obtained by 10-fold CV. Table 11.1 shows the simulation results for the multi
sample split method using Sadapt and the adaptive Lasso on its own, side by side
for a simulation setting with n = 100, p = 200 and the same settings as in (A)
and (B) otherwise. The adaptive Lasso selects roughly 20 noise variables (out of
p = 200 variables), even though the number of truly relevant variables is just 5 or
10. The average number of false positives is at most 0.04 and often simply 0 with
the multi sample split method. There is clearly a price to pay for controlling the

E( True Positives )| E( False Positives ) |P( False Positives > 0 )
Uniform Multi  Adaptive |(Multi  Adaptive |[Multi Adaptive
Sampling |So| SNR| Split Lasso Split Lasso Split Lasso
NO 10 0.25(0.00 2.30 0 9.78 0 0.76
NO 10 1 [058 6.32 0 20.00 0 1
NO 10 4 (414 8.30 0 25.58 0 1
NO 10 16 [7.20 9.42 0.02 30.10 0.02 1
YES 10 0.25]0.02 2.52 0 10.30 0 0.72
YES 10 1 [0.10 7.46 0.02 21.70 0.02 1
YES 10 4 |2.14 9.96 0 28.46 0 1
YES 10 16 [9.92 10.00 0.04 30.66 0.04 1
NO 5 0.25]0.06 1.94 0 11.58 0 0.84
NO 5 1 |150 3.86 0.02 19.86 0.02 1
NO 5 4 ]352 4.58 0.02 23.56 0.02 1
NO 5 16 |4.40 4.98 0 27.26 0 1
YES 5 0.25/0.02 222 0 12.16 0 0.8
YES 5 1 (082 4.64 0.02 22.18 0.02 1
YES 5 4 [490 5.00 0 24.48 0 1
YES 5 16 |5.00 5.00 0 28.06 0 1

Table 11.1 Comparing the multi sample split method using the adaptive Lasso Sadapt (Multi Split)
with the variable selection made by the plain adaptive Lasso with a CV-choice of the involved
penalty parameters (Adaptive Lasso) for settings as in (A) or (B) but with n = 100 and p = 200.

familywise error rate: the multi sample split method detects on average less truly
relevant variables than the adaptive Lasso. For very low SNR, the difference is most
pronounced. The multi sample split method selects in general neither correct nor
wrong variables for SNR = 0.25, while the adaptive Lasso averages between 2 to 3
correct selections, among 9-12 wrong selections. Depending on the objectives of the
study, one would prefer either of the outcomes. For larger SNR, the multi sample
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split method detects almost as many truly important variables as the adaptive Lasso,
while still reducing the number of falsely selected variables from 20 or above to
roughly 0.

The multi sample split method seems most beneficial in settings where the cost of
making an erroneous selection is rather high. For example, expensive follow-up ex-
periments in biomedical applications are usually required for scientific validation,
and a stricter error control will place more of the available resources into experi-
ments which are likely to be successful.

11.5.2 Familywise error control for motif regression in
computational biology

We apply the multi sample split method to real data about motif regression to find
binding sites for the HIF1 & transcription factor. More details about the problem and
the data are given in Section 2.5.2. Here, the motif regression problem amounts to
variable selection in a linear model with sample size n =287 and p = 195 covariates.

We use the multi sample split method with the adaptive Lasso S‘adapt as described
in Section 11.5.1. The multi sample split method identifies one variable at the 5%
significance level with an adjusted p-value of 0.0059, see (11.8). The single sam-
ple split method is not able to identify a single significant predictor. In view of
the asymptotic error control in Theorem 11.1 and the empirical results in Section
11.5.1, there is substantial evidence that the single selected variable is a truly rele-
vant variable. For this specific application it seems desirable to pursue a conservative
approach with FWER control.

11.5.3 Simulations and false discovery rate control

We now look empirically at the behavior of the multi sample split method for FDR
control, discussed in Section 11.4, and its power to detect truly interesting variables.
We use the Lasso with cross-validation for choosing the regularization parameter,
denoted by Scy, for the variable selection or screening step. Turning again to the
simulation setting (A) in Section 11.5.1, we vary the sample size n, the number of
variables p, the signal to noise ratio SNR, the correlation p in the Toeplitz design
covariance matrix and the number so = |Sp| of active variables.

We have empirically illustrated above that the multi sample split method is prefer-
able to the single-split method for familywise error control. Here, we are more in-
terested in a comparison to well understood traditional FDR controlling procedures.
For p < n, the standard approach would be to compute the least squares estima-
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tor once for the full dataset. For each variable, a p-value is obtained and the FDR
controlling procedure as in (11.11) can be applied. This approach obviously breaks
down for p > n whereas the multi sample split method can be applied both to low-
dimensional (p < n) and high-dimensional (p > n) settings.

In all settings, the true FDR of the multi sample split method is often close to
zero and always below the controlled value of o¢ = 0.05. Results regarding power
are shown in Figure 11.4 for control at o = 0.05. The multi sample split method
tracks the power of the standard FDR controlling procedure quite closely for low-
dimensional data with p < n. In fact, the multi data split method is doing consider-
ably better if n/p is below, say, 1.5 or the correlation among the variables (and hence
among the tests) is large. An intuitive explanation for this behavior is that, as p ap-
proaches n, the variance of all OLS components B ;i (j=1,...,p) is increasing and
it reduces the ability to select the truly important variables. The multi sample split
method, in contrast, trims the total number of variables to a substantially smaller
number on one half of the samples and then suffers less from an increased variance
in the estimated coefficients on the second half of the samples. Repeating this over
multiple splits leads to a surprisingly powerful variable selection procedure even for
low-dimensional data.
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Fig. 11.4 Power of FDR controlling procedures: the multi sample split method (dark bar) and
standard FDR control (light bar). The settings of n, p,p,sp and SNR are given for nine different
scenarios. The height of the bars corresponds to the average number of selected relevant variables.
For p > n, the standard method breaks down and the corresponding bars are set to height 0. The
figure is taken from Meinshausen et al. (2009).
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11.6 Consistent variable selection

We will show here that the sample splitting procedure, in particular the multi sam-
ple split version, lead to consistent variable selection for a high-dimensional linear
model. The single sample split method (which is not advised to be used) can be
viewed as some sort of two-stage procedure: any reasonable variable selection or
screening method $ is followed by least squares estimation on the selected vari-
ables. In contrast to the Lasso-OLS hybrid or the more general relaxed Lasso, see
Section 2.10, or also in contrast to the adaptive or thresholded Lasso, see Sections
2.8 and 2.9, the two-stage procedure here is based on independent half-samples.

If we let the significance level @ = a, — 0 for n — oo, the probability of falsely
including a noise variable vanishes because of Proposition 11.1 or Theorem 11.1 on
familywise error control. In order to get consistent variable selection, in the sense
that

P[S=5)] = 1 (n— ),

where § = Ssingle—split FWER a8 in (11.6) or Spuiii—split FweRr as in (11.9), we have to
analyze the asymptotic behavior of the power. This will be discussed next.

11.6.1 Single sample split method

We present now sufficient conditions for consistent variable selection with the single
sample split method. Although the method is not advised to be used, see the “p-value
lottery” in Figure 11.1, it is easier to understand the mathematical properties for this
procedure first and then analyze the multi sample splitting method afterwards. We
assume that the splitting into /; and I, is fixed (e.g. a fixed realization of a random
splitting mechanism). We make the following assumptions. First, we need a slightly
stronger sparsity property:

P(|S|,0)| < an] = 1, ay=o(n). (11.14)
Note that together with the screening property (11.3), this implies
50 =|So| < an = o(n). (11.15)

We also refer to Corollary 7.10 and Corollary 7.14 in Chapter 7 showing that the
Lasso has no more than O(s¢) false positive selections under strong conditions while
the adaptive Lasso achieves O(sg) false positives under more relaxed assumptions,
see Section 7.11.4. Furthermore, we need an assumption regarding the power of the
individual tests. Denote by Tj, s.; the t-statistics for variable j based on the second
half of the sample /> and based on a linear model with covariates from the set S C
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{1,...,p} (assuming implicitly that j € S). In other words,

AOLls
h:jlS
Thsi= o Tor = (11.16)
6551/ (XL, sXn.s)]
BOLS ~OLS : :
where 7> and 6, are the standard ordinary least squares estimators based on
12,]‘5 [2,S

sub-sample I, and covariates from S. We then assume

sup ), Pl|Tp.sijl <t(1— /2, || = |S])] = 0 (n — =),
Se jes,

S ={S; SoCS, |S| <an}, (11.17)

where a, is as in (11.14). Thereby, #('y,m) denotes the y-quantiles of a r,,-distribution.
We note that the degrees of freedom above are lower bounded by

|L]—|S| >n—|n/2] —a, — o (n — o0),

since a, = o(n). We will show in Lemma 11.3 that (11.17) holds assuming that the
true absolute coefficients |B;| are sufficiently large for all j € Sy and some rather
weak regularity condition on the design.

Lemma 11.2. Consider the linear model as in (10.1) with fixed design and Gaussian
errors & ~ N (0, 62). Assume the screening property (11.3), the sparsity property
(11.14) and (11.17). Then, P[Ssingle—split FWER(04;) 2 So] = 1 (n — ).

Proof.

PN {J € Ssinglesplit FWER () Y] = 1 = P[Ujsg {j & Ssingle—split Fwer (0) }]
)

Z 1— Z P[] ¢ kSA‘singlefsplil FWER(an ]
jess
= 1= Y PIIT, 5, [ <t(1= /2, ] =S5 )] 1 (2= <0),
jess
where the last convergence is due to assumption (11.17). O

11.6.1.1 Verification of condition (11.17)

We give here sufficient conditions such that (11.17) holds. Assume that for I, = I,
as n is growing,

inf |B;] > Con'/2, [log(ISo]) sup (|| ' X] (X, 5)7 )
J€So Se.s " ’

for some C,, — oo growing arbitrarily slowly. (11.18)
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This condition holds as follows: assume for I, = I, , and for some M < oo,

sup (|| ~'XF,, §Xn,.5) 7 S M <o, (11.19)
Se. neN '

then (11.18) is implied by
inf |B| > Con'21/1og(|So]), (11.20)
JE€30

where the constant M is absorbed into C,,. Furthermore, assumption (11.19) holds if
for some D > 0,

inf  Amin (|7
Se.# neN mm(| 2n

“'X1,,.5Xn,.5) =D >0, (11.21)

where A2, (A) denotes the minimal eigenvalue of a symmetric matrix A. We leave
the derivation as Problem 11.3. Assumption (11.21) is a sparse eigenvalue assump-
tion as used in Section 10.6 and discussed in Section 6.13.5. (We note that the
beta-min condition below in (11.22), needed for variable screening, is sufficient

for (11.20) if [So|+/log(p)/log(]|Sol|) is growing with n).

Lemma 11.3. Consider the linear model as in (10.1) with fixed design and Gaussian
errors g ~ N (0, 62). Assume that (11.18) holds. Then there exists a sequence 0, —
0 (n — o0) such that condition (11.17) holds (for such an o).

A proof is given in Section 11.8. The sequence o, could be made more explicit as a
function of the value a,, in (11.14) and the lower bound for the absolute regression
coefficients in (11.18).

We now give some sufficient conditions for consistent variable selection with the
single sample split method.

Corollary 11.1. Consider the linear model as in (10.1) with fixed design and Gaus-
sian errors. Assume the screening property (11.3), the sparsity property from (11.4),
the assumption on the non-zero regression coefficients from (11.18) and a design
condition as in (11.21). Then, there exists a sequence 0, — 0 (n — o) such that the
single sample split FWER procedure satisfies:

P[SAsinglefsplit FWER(an) = SO] —1 (n - oo)'

The corollary follows from Lemma 11.1 (which holds also for o = «, depending
on n in an arbitrary way; see the proof), Lemma 11.2 and 11.3.

Using the Lasso as variable screening procedure S, the screening property in (11.3)
follows from a compatibility condition on the design and a beta-min condition on
the non-zero regression coefficients of the form

I
inf |61 > ClSoly/ 2L, (11.22)
JE€So n
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For more details, see Section 2.5 and Section 6.2.2. Condition (11.22) together with
(11.21) implies (11.18). We note that (11.22) might be overly unrealistic in practice:
this problem is briefly discussed at the end of Section 2.6 in Chapter 2 and in Section
7.4.

11.6.2 Multi sample split method

It turns out that variable selection consistency of the single sample split method
implies the same property for the multi sample split procedure, as described next.

Proposition 11.2. Let S’single,spm FwER (@) be the selected model of the single sam-
ple split method. Assume that o« = o, — 0 can be chosen for n — o such that
limnﬁmP[SSmgle,spm FwER () = So] = 1, for every single sample split into I} and
b. Then, for any Y € (0,1) (see (11.8)), the multi sample split method, with fixed
number B of random splits, is also consistent for variable selection, i.e.,

JEEOP[SAmultifsplit FWER (0n) = So] = 1.

A proof is given in Section 11.8. Proposition 11.2 is no surprise as the multi sample
split method should be at least as good as the single sample split analogue. This is
intuitively clear and is also illustrated with empirical results in Section 11.5.

Sufficient conditions for variable selection consistency with the single sample split
method are summarized in Corollary 11.1. We remark that we have to strengthen
condition (11.21) to hold for every (single) sample split, i.e.

inf  Ap,(m'XT X >D>0
S€S dmy:neN min TomS [(’")’S)_ ’

where the infimum also runs over all subsets /) C {1,...,n} of cardinality m =

n—|n/2|.

11.7 Extensions

We briefly discuss how the sample-splitting methodology can be used for other mod-
els and for controlling other error measures.
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11.7.1 Other models

Due to the generic nature of the sample splitting methodology, extensions are
straightforward to situations where (asymptotically valid) p-values Fayw; for hy-
potheses Hy j (j =1,...,p), based on the second half of the data I, as in (11.1),
are available.

An important class of examples are generalized linear models (GLMs), described
in Chapter 3. The null-hypotheses are Hyj: B; =0 (j =1,...,p) as for linear
models. We could use the Lasso for GLMs, see Section 3.2.1, for variable screening
or selection based on the first half of the sample /;. The p-values based on the second
half of the data /, rely on classical (e.g. likelihood ratio) tests applied to the selected
submodel, analogous to the methodology proposed for linear models.

Another example are (generalized) additive models, described in Chapter 5. The
null-hypotheses are then Hp ; : f;(-) =0 (j=1,..., p), saying that additive functions
are zero. We could use the estimator in (5.5) using the sparsity smoothness penalty
for variable screening based on the first half of the sample /;. Approximate p-values
based on the second half of the data I, could be obtained by likelihood ratio tests,
see e.g. Wood (2006).

A third example are Gaussian Graphical Models, described in Chapter 13, Section
13.4. There, the dimensionality reduction on the first half of the sample /; can be
based on an ¢;-penalization scheme such as the GLasso, see Section 13.4.1. The
p-values based on the second half of the data I, rely again on classical likelihood
ratio tests, see e.g. Lauritzen (1996).

11.7.2 Control of expected false positive selections

In some settings, control of FWER, say at o = 0.05, is too conservative. One can ei-
ther resort to control of FDR, as described in Section 11.4. Alternatively, the FWER
control procedure can easily be adjusted to control the expected number of false
positives. Define, for M > 1 and 0 < o < 1,

SAmultifsp]it FP(aaM) = {]’ Pnon—capp,j/M < (X},

where Pyon—capp,j are adjusted p-values as in (11.8), but not capped at 1. Further-
more, let

Vinatti—splic P (06 M) = [Smuti—splic (0, M) N S§ .
Then, the expected number of false positives is controlled:

lim sup E[Vinuii —spiic (06, M)] < oM. (11.23)

n—yoo
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A proof of this follows directly from the proof of Theorem 11.1. We leave it as
Problem 11.4. For example, setting M = a~'8 (8 > 0 small) offers a much less
conservative error control than using the familywise error. Note that control of the
expected number of false positives could also be achieved with the stability selection
method, albeit under a strong exchangeability assumption as described in Theorem
10.1.

11.8 Proofs

11.8.1 Proof of Proposition 11.1

For technical reasons we define

K= B2 1050 € 8P (8o 2 §P1). (11.24)
Thus, Kg-b} is the adjusted p-value if the estimated active set contains the true active
set, and it equals 1 otherwise. Consider the set
Ay={K/" =Bl forallb=1,...,B}.

Because of assumption (11.3), and since B is fixed, we have
P[A,] = 1 (n— ).

Therefore, we define all the quantities involving PC[Z]“ f also with K , and it is suffi-

cient to show, under this slightly altered (theoretical) procedure that

P[minQ;(y) < o] < a.
jess
In particular we can omit here the limes superior since on the set A,,, we can show
finite sample error control.

We also omit for the proof the truncation function min{1,-} from the definitions of
Q;(y) and P;j in (11.7) and (11.8), respectively. The selected sets of variables are

clearly unaffected and the notation simplifies considerably.
Define for u € (0, 1) the quantity 7;(u) as the fraction of split samples that yield KJ[-b]
less than or equal to u,

1 B
mi(u) = 3 Z l(Kj[.b] <u).
b=1
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Note that the events {Q;(y) < a} and {x;(oty) > v} are equivalent. Hence,

P[minQ;(7) < Y ENQ;(y) <)) =Y El(mj(ay) >y). (11.25)

'C
JESH jess jess

Using a Markov inequality,

Y E[l(z;(ay) > v)] Z E[z;(aty)). (11.26)

Jjesg JjESg

By definition of 7;(-),

LY Elzj(ap) =11 Z Y ENK<ay)]. (11.27)
JES§ =1 jesgnslh)
Here we have used that Kj[b] =1for;¢ il Moreover, using the definition of Kg-b}
in (11.24), '
o
EN(KY” < ay)] < PP, < aylSo < ) = ﬁ (11.28)

This is a consequence of the uniform distribution of f’][b] given Sp C S [b], for j € 5.
Summarizing, using (11.25)-(11.28) we get

oy
P(‘]‘QSI}QJ( )<Z]E( ZAh SV’H) <a,

which completes the proof. |

11.8.2 Proof of Theorem 11.1

As in the proof of Proposition 11.1, we will work with K][ ) instead of P ] ;- Anal-

(]

ogously, instead of the non-adjusted F’j , we work with

/= PP(so < $1) +1(50 Z $7).

For any K| with j € §§ and o € (0, 1),

o b]
(R <
E(“’/a”) <a. (11.29)
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Furthermore,
(5] (5] vl
(K <o (K" <o (K <o
E(max<, < Y)>SE(Z (K" < ”)gE( y (K" < y>>7
JES; Y Y Y

) jesgnstel

where we use that KJW =1forj¢ Il and hence, with (11.29) and using the defi-
nition (11.24) of K,

b]

I(K,L <ay) a
E(maxy) gIE( Y §[b1|> <a. (11.30)

J<5 jesgnslel

For a random variable U taking values in [0, 1],

0 U>a
(U < )
sup M: o/U Qmin <U < a,
YeOminl) ¥ 1/ ¥min U < Q%¥min-

Moreover, if U has a uniform distribution on [0, 1],

(U<« "0 Ymin (24
E( sup (_Y)) = / vl dx+ ax 'dx = a(1 — 102 Ynin).-
Ye (Ymim]) y J0 O Ymin

Hence, by using that Iggb] has a uniform distribution on [0, 1] for all j € S§, condi-
tional on the event Sy C S [b],

el0]

I(K;" <« I(K;" <« N

E( sup M)SE( sup M|Sg5[b]>:a(l—logymin),
YG(Ymin-l) ’y }’G('}’miml) ’}/

bl < ay) = 0if Sp Z S, Analogously to (11.30), we can

where we used that 1(K
then deduce that

Z ]E( sup ]> < OC(] _logYmin)-
jesg N\ 7E(min 1) 4

Averaging over all split samples yields

Y E

( 1ys 1Ky < a)
JEN Ye

sup ) < o(1 —10g Yinin)-
<7min71) ’}/

Using again a Markov inequality,
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Y E[ sup I(m;(ay) >7)] < (1 —10g Ymin),
jess  YE(Wmin,1)

where we have used the same definition for 7;(-) as in the proof of Proposition 11.1.

Due to the equivalence {Q;(y) < a} = {m;(ay) > 7}, it follows that

Zfﬂiﬁlgxwgﬂgau—mmm@

jess Y€ (Ymin,1)
implying that

Y P[ inf Q(y)(1 —logYmin) < @] < .
jese  E(mins1)
0

Using the definition of P; in (11.8),

Y PPi<al<a, (11.31)

Jess
and thus, by the union bound,

PminP; < a] < a,
JESG

which completes the proof. |

11.8.3 Proof of Theorem 11.2

As in the proofs of Proposition 11.1 and Theorem 11.1, we use implicitly for all
p-values a version as in (11.24). We denote by

)4
g=ay i’ (11.32)
i=1

asin (11.13). Let

pije=PUP. € (=D, ja}nCP] (i,j=1,...,p),

(i)

where C, kl is the event:

C,Ei> = {variable i rejected = k — 1 other variables are rejected}.

Here, the word rejected means that the variable is not in the set Smulti—split FDR(Q).
This notation is as in Benjamini and Yekutieli (2001, proof of Theorem 1.3).
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Now, as shown in equation (10) and then again in (28) in Benjamini and Yekutieli
(2001),

Using this result, we use in the beginning of the next (in-)equalities a similar argu-
ment to Benjamini and Yekutieli (2001),

L P q
ElQ()] =} Y X piw=Y X ) 7Pin
i€Sghk=1" j=1 i€Sy j=lk=j
&1 L P P
<Y Y Y -piu<Y Y -Yru=Y-Y Y pij. @133
iesg j=1k=j J iess j=1 7 k=1 =17 iesgi=1

Let us denote by

P
=Y Y pijs J=1..,p.

i€Sh k=1

The last inequality in (11.33) can then be rewritten as

P P J i1
E[o(a)] < ), =f(N=F)+ ) =( X f() = X £(})
=1/ =271 = j=1
r—1 1 J y 12 ,
= ]:1(7 - m)jglm )+ ;jg,lf(J )- (11.34)

Note that, in analogy to (27) in Benjamini and Yekutieli (2001),
" ol
Zpljk - {P € [(] - 1)%]6]]} UCk ) = P(Pl € [(]_ I)Qa]qna
k
and hence

Zzpuk—zppe ]_])QJCID

zES‘ k= lES‘
Thus, it follows that
j /
Y () =Y PP < jq < jg,
Jj'=1 €Sy

where the last inequality is due to (11.31) in the proof of Theorem 11.1. Using this
bound in (11.34), we obtain
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1 _
- +1
; J J+1 ; ]‘HJ = qj:le

due to the definition in (11.32). This completes the proof. ]

11.8.4 Proof of Proposition 11.2

Because the single sample split method is model selection consistent, it must hold
that P[max jes, P;[S, | < o] — 1 for n — oo. Using multiple sample splits, this prop-
erty holds for each of the (fixed number of) B splits and hence

P[max max ISJ[ JIS8]) < o] — 1.
Jj€So b=1,...,B
This implies that the quantile max jes, Q;(1) is bounded from above by a,, with
probability converging to 1 as n — co. The maximum over all j € So of the ad-
justed p-values P; = (1 — log)/mm)infyE mins1) Qi ( ), see (11.8), is thus bounded
from above by (1 —10g Yin) O, again with probablhty converging to 1 for n — co.
Thus, all variables in Sy are selected with probability tending to 1 which completes
the proof. a

11.8.5 Proof of Lemma 11.3

We write (11.16) as:

BOLS
Jls

(XZ,SX[27S);}

c
Tns,j= " 5OLs =:Ujjs- Vs.
S

For the first variable, since S O S,

A%LS
Ujs = TJ = ~ A, 1),

(XIZ,SXIZ -,S)j,j
= B , (11.35)

T —1
(XIZ,SXIZ -,S)j,j
For the second variable, we use that

(65°)% /0% ~ 2315/ (n—S]).
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Thus, since |S| < a, = o(n), |So| < a, = o(n) (see (11.15)), and the exponentially
fast concentration of the x2/n distribution around 1, see Example 14.1 in Chapter
14, we have for any 0 > 0,

sup |S0|P<’ SR 1’§6) 1 (1= o). (11.36)
Ses Og

Next, we use
P(|U;slVs >c) > P(|U;s|Vs > c,Vs € [1 - 8,1+ 8))

_P(I jisl > 1 5,Vge [1—5,1+3}>.

where the last inequality holds due to the implication that [Ujs| > %5 and Vs €
[1—3,1+ 8] imply that |Ujs|Vs > c. Now, we use that P[ANB] > P[A] — P[B¢] for
any two events A and B: we leave the derivation as Problem 11.5. Therefore,

P<|UjS|V5 > c> >P(|Uj|5| > 113) —P(V, ¢ [1-8,1+8)). (11.37)

Now,
17a11/2
bilb| ) if B; >0,

P( —
LI 'XT X, ¢);!
(| sl > 05)2 o111 X ),

P(Z<_C+ Bl ) if B; <0
N (A A '

where Z ~ .4#(0,1), see (11.35).
Now choose ¢ = t(1 — /2, || — a,). Due to (11.18), the dominating terms are
Bjl|'?

, and because of (11.18) we obtain
ENARE AR

sup ¥ P<|Ujs| <=2, 'Iz'“”)> SO0, (1138)

Seyjeso I- 5

where o, can be chosen to converge to 0 sufficiently slowly. The exact derivation is
left as Problem 11.6.

Using (11.37), (11.38) and (11.36), we complete the proof. O
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Problems

11.1. Describe why the “p-value lottery” in Figure 11.1 arises. Which conditions
ensuring variable screening, see (11.3), appear to be violated ? (See also Section
2.5 in Chapter 2, describing the screening properties of the Lasso). Are there other
plausible reasons?

11.2. Show that the p-values in (11.2) control the familywise error rate, assuming
(11.3), (11.4) and Gaussian errors.

11.3. Condition (11.21) is sufficient for condition (11.19) by using the following

fact. For a symmetric m x m matrix A with positive minimal eigenvalue A2. (A) > 0:

1
ATl < .
3i = AZ(A)

min
Prove that the latter holds.
Hint: Use the spectral decomposition A = UDUT, where UTU = UUT and D =
diag(A,...,A,) containing the eigenvalues A; < ... < A4,. The inverse is then
A-'=uD 'UT,
11.4. Prove formula (11.23).
11.5. Prove that for any two events A and B:

P[ANB] > P[A] - P[B].

11.6. Prove the bound in (11.38) by showing

t(1—o0,/2,|L|—a
sup  |So[P[U;) < {0 /212l ~an)

]—0.
Se.,jeSy 1-6

Note that the sequence ¢, can be chosen to converge to 0 sufficiently slowly.



Chapter 12

Boosting and greedy algorithms

Abstract Boosting algorithms or greedy methods are computationally fast and of-
ten powerful for high-dimensional data problems. They have been mainly developed
for classification and regression. Regularization arises in form of algorithmic con-
straints rather than explicit penalty terms. Interestingly, both of these regularization
concepts are sometimes close to being equivalent, as shown for linear models by
Efron et al. (2004). We present boosting and related algorithms, including a brief
discussion about forward variable selection and orthogonal matching pursuit. The
exposition in this chapter is mainly focusing on methodology and describing sim-
ple computational ideas. Mathematical theory is developed for special cases like
one-dimensional function estimation or high-dimensional linear models.

12.1 Organization of the chapter

After an introduction, we present in Section 12.3 the gradient boosting algorithm
representing the core methodological idea of boosting. Different loss functions for
different settings, including regression and classification, and their corresponding
boosting algorithms are described in Section 12.4. The choice of the weak learner or
base procedure is treated in Section 12.5. Section 12.4.4.1 contains a more detailed
description of LpBoosting based on the squared error loss for regression. It covers
asymptotic optimality and high-dimensional consistency as well as methodological
connections to the Lasso. Forward variable selection and orthogonal matching pur-
suit are discussed in Section 12.7. Finally, all proofs are collected in Section 12.8.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 387
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 12,
© Springer-Verlag Berlin Heidelberg 2011
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12.2 Introduction and preliminaries

Freund and Schapire’s AdaBoost algorithm for classification (Freund and Schapire,
1996, 1997), the first successful boosting algorithm, has attracted much attention in
the machine learning community (cf. Schapire, 2002, and the references therein) as
well as in related areas in statistics (Breiman, 1998, 1999; Friedman et al., 2000;
Friedman, 2001; Biihimann and Hothorn, 2007). AdaBoost and its various versions
have been empirically found to be very competitive in a variety of applications.
Furthermore, there is a striking similarity between gradient based boosting and the
Lasso in linear or generalized linear models. Thus, despite substantial conceptual
differences, boosting-type algorithms are implicitly related to ¢;-regularization.

12.2.1 Ensemble methods: multiple prediction and aggregation

Boosting algorithms have been originally proposed as ensemble methods. They rely
on the principle of generating multiple predictions from re-weighted data which are
then aggregated using linear (or convex) combination or majority voting for building
the final estimator or prediction.

First, we specify a base procedure, sometimes also called weak learner, which con-
structs a function estimate or a prediction g(-) based on some input data (X;,Y;),...,
(X, Y,) with covariates X; and responses Y;:

base procedure
—

(leyl)»---a(XmYn) g’()

A very popular base procedure is a regression tree. Other examples will be described

in Section 12.5.

Generating an ensemble from the base procedure, i.e., an ensemble of function esti-
mates or predictions, works generally as follows:

b d
re-weighted data 1 ase progecure ()
b d
re-weighted data 2 ase progedure 320
. base procedure
re-weighted data M s g[ ]()

. M
aggregation: fa(-)= Y Ocmg[m]('),

m=1
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using suitable coefficients «,..., . What is termed here “re-weighted data”
means that we assign individual data weights to every of the n sample points.
Thereby, we implicitly assume that the base procedure allows to do some weighted
fitting, i.e., estimation is based on a weighted sample. Throughout this chapter (ex-
cept in Section 12.2.2), we assume that a base procedure estimate g(-) is real-valued,
i.e., a regression-type procedure.

The above description of an ensemble scheme is too general to be of any direct use.
The specification of the data re-weighting mechanism as well as the form of the lin-
ear combination coefficients {a, }*_, are crucial, and various choices characterize
different ensemble schemes. Boosting methods are special kinds of sequential en-
semble schemes, where the data weights in iteration m depend on the results from
the previous iteration m — 1 only.

12.2.2 AdaBoost

The AdaBoost algorithm for binary classification (Freund and Schapire, 1997) is
the most well known boosting algorithm. Consider data (X;,Y;),...,(X,,Y,) with
Y; € {0,1} and p-dimensional covariates X;. The base procedure is a classifier with
values in {0,1}, for example a classification tree (slightly different from a real-
valued function estimator as assumed above). The digression from using a real-
valued base procedure is only for this subsection as we will not consider the Ada-
Boost algorithm any further. AdaBoost is briefly presented in Algorithm 6: the in-
tention of the description is for the sake of completeness since it has been the first
successful boosting algorithm. Afterwards, in the following sections, we will exclu-
sively focus on so-called gradient boosting algorithms.

By using the terminology my,p (instead of M as in the general description of en-
semble schemes), we emphasize here and later that the iteration process should be
stopped to avoid overfitting. It is a tuning parameter of AdaBoost and it is typically
selected using some cross-validation scheme.

12.3 Gradient boosting: a functional gradient descent algorithm

Breiman (1998, 1999) showed that the AdaBoost algorithm can be represented as
a steepest descent algorithm in function space which we call functional gradient
descent (FGD). Friedman et al. (2000) and Friedman (2001) developed later a more
general, statistical framework which yields a direct interpretation of boosting as a
method for function estimation. In their terminology, it is a “stagewise, additive
modeling” approach (but the word “additive” doesn’t imply a model fit which is
additive in the covariates, see Section 12.5).
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Algorithm 6 AdaBoost algorithm

1: Initialize weights for individual sample points: wl[o] =1/nfori=1,...,n.Setm=0.

2: Increase m by one: m <— m+ 1.
Fit the base procedure to the weighted data, i.e., do a weighted fitting using the weights w
yielding the classifier g (.).

3: Compute the weighted in-sample misclassification rate

erdl = Yol 1 (1, £ (%)) / Yol

i=1 i=1

[m] 1— err[”’]
o™ =log | ——— |,
errl”

and up-date the weights

[m—1]

i >

Wi = wl[mq] exp <Ot[m]1 (Yi # g (X1)>> )

Wl[m] = W,'/ Z VT/J'.
j=1
4: Iterate steps 2 and 3 until m = myg,p and build the aggregated classifier by weighted majority
voting:
R Mstop
SAdaBoost (¥) = argmax Z al (g['"] (x) = y) .
ye{0,1} m=1

The classification rule is then given by

C'adaBoost (x) =1 (fAdaBoost (x) > 0) .

Consider the problem of estimating a real-valued function

0= arg(q)linIE[p(f(X),Y)L (12.1)

where p(-,-) is a loss function which is typically assumed to be differentiable and
convex with respect to the first argument and minimization is over all (measurable)
functions f(-). For example, the squared error loss p(f,y) = [y — f|* yields the
well-known population minimizer f°(x) = E[Y|X = x].

12.3.1 The generic FGD algorithm

In the following, FGD and boosting are used as equivalent terminology for the same
method or algorithm. Estimation of f°(-) in (12.1) with boosting can be done by
considering the empirical risk n= ' Y'__, p(f(X;),Y;) and pursuing iterative steepest
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descent in function space. We note that there is no explicit regularization term when
minimizing the empirical risk: as we will describe below, regularization with boost-
ing is done via algorithmic constraints, namely the number of iterations in the op-
timization process. The following algorithm has been given by Friedman (2001).

Algorithm 7 Generic FGD algorithm

1: Initialize f1°(-) with an offset value. Common choices are

n

f[()] ()= argminnil ZP(QYi)

i=1

or flO(.)=0. Setm = 0.
2: Increase m by one: m <— m+1. R
Compute the negative gradient _987 p(f,Y) and evaluate at £~ 1(X;):

0 .
Ui= _aifp(f7yi)‘f:f[m*1](Xi)7 i=1,...,n.

3: Fit the negative gradient vector Uy,...,U, to Xi,...,X, by the real-valued base procedure (e.g.
regression)

base procedure .
— M.
Thus, g (+) can be viewed as an approximation of the negative gradient vector.
4: Up-date fI"(-) = fIm=1 () 4+ v gl"l(.), where 0 < v < 1 is a step-length factor (see below),
i.e., proceed along an estimate of the negative gradient vector.
5: Iterate steps 2 to 4 until m = mygp for a pre-specified stopping iteration mgp.

(X, Uiy

The stopping iteration mgop, Which is the main tuning and regularization parameter,
can be determined via cross-validation. The choice of the step-length factor v in step
4 is of minor importance, as long as it is “small” such as v = 0.1. A smaller value of
v typically requires a larger number of boosting iterations and thus more computing
time, while the predictive accuracy has been empirically found to be potentially
better and almost never worse when choosing v “sufficiently small” like v = 0.1
(Friedman, 2001). We remark that Friedman (2001) suggests to use an additional
line search between steps 3 and 4 (in case of other loss functions p (-, -) than squared
error): it yields a slightly different algorithm but the additional line search seems
unnecessary for achieving a good estimator f!"swp],

12.3.1.1 Alternative formulation in function space

In steps 2 and 3 of the generic FGD Algorithm 7, we associated with Uy,...,U, a
negative gradient vector. A reason for this can be seen from the following formula-
tion in function space.
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Consider the empirical risk functional C(f) =n~' Y%, p(f(X;),Y;), that is, we re-

1yn

gard C(-) as amapping from f € L,(Q,) to R, where Q, =n""' }.i'_| Oy, is the empiri-

—1yn

cal measure of the X;’s. The associated inner productis (f,8), =n""' Y1 f(X:)g(X;)
(f,8 € L2(Qn)). We can then calculate the negative (functional) Gateaux derivative
dC(-) of the functional C(-),

dC(F)) =~ C(f + 08 aco. 1 € La(00), xE R,

where 8, denotes the delta- (or indicator-) function at x € R”. In particular, when
evaluating the derivative —dC at £~ !l and X;, we get

—dC(f" ) (X;) =n"'U;, (12.2)

with Uy, ..., U, exactly as in Steps 2 and 3 of the generic FGD Algorithm 7 (Problem
12.1). Thus, the negative gradient vector Uy, . .., U, can be interpreted as a functional
(Gateaux) derivative evaluated at the data points.

12.4 Some loss functions and boosting algorithms

Various boosting algorithms can be defined by specifying different loss functions

12.4.1 Regression

For regression with response Y € R, the most popular choice is the squared error loss
(scaled by the factor 1/2 such that the negative gradient vector equals the residuals,
see Section 12.4.4 below):

1
pLo(f.y) =5y —fP (12.3)
with population minimizer
/L, x) =E[Y X =2

The corresponding boosting algorithm is L,Boosting, described in more detail in
Section 12.4.4.

An alternative loss function which has some robustness properties (with respect to
the error distribution, i.e., in “Y-space”) is the L;-loss
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oL (fy) =y —f]
with population minimizer
£°(x) = median(Y|X = x).

Although the L;-loss is not differentiable at the point y = f, we can compute partial
derivatives since for fixed f, the single point ¥; = f(X;) (usually) has probability
zero to be realized by the data. Alternatively, as a compromise between the L- and
Ly-loss, we may use the Huber-loss function from robust statistics: for & > 0,

(= fRa ify—fl<8
Prtuber () = { S(ly— £ 8/2), if[y—f|> 5.

A strategy for choosing (a changing) § adaptively in iteration m has been proposed
by Friedman (2001):

8, = median({[Y; — /" (X)) i=1,...,n}),

where the previous fit f"~11(.) is used.

12.4.2 Binary classification

For binary classification, the response variable is Y € {0,1} with P[Y = 1|X =x] =
7t(x). Often, it is notationally more convenient to encode the response by ¥ = 2V —
le{-1,+1}.

We consider the negative binomial log-likelihood as loss function. As described in
Section 3.3.1, formula (3.5), the loss function (using some scaling) is

Prog-1ik (f,¥) = log, (1 +exp(—27f)), (12.4)

which then becomes an upper bound of the misclassification error, see Figure 12.1.
The population minimizer can be shown to be (Problem 12.2)

Siog ik (x) = %log (%) , w(x) =PY = 1|X =x], (12.5)

see also Example 6.4 in Section 6.6.

We now briefly repeat the argument at the end of Section 3.3.1. The loss function in
(12.4) is a function of §f, the so-called margin value (bearing some remote relations
to the margin condition from statistical theory, see Section 6.4), where the function
f induces the following classifier for Y:
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[ 1iff(x)>0
G = {0 if £(x) <0.

Therefore, a misclassification happens if ¥ f(X) < 0. Hence, the misclassification
loss is

pmisclass(fvy) = l(yf < 0); (12.6)

whose population minimizer is equivalent to the Bayes classifier (for ¥ € {—1,+1})

(iR > 172
fr(r)lisclass(x) - { —1if n(x) < 1/27

where 7(x) = P[Y = 1|X = x]. Note that the misclassification loss in (12.6) cannot be
used for boosting or FGD (Algorithm 7): it is discontinuous and also non-convex as
a function of the margin value f or as a function of f. The negative log-likelihood
loss in (3.5) can be viewed as a convex upper approximation of the (computationally
intractable) non-convex misclassification loss, see Figure 12.1. We will describe in
Section 12.4.4 the BinomialBoosting algorithm (similar to LogitBoost (Friedman
et al., 2000)) which uses the negative log-likelihood as loss function.

Another upper convex approximation of the misclassification loss function in (12.6)
is the exponential loss

Pexp(f>y) = exp(=Ff). 12.7)

The population minimizer can be shown to be the same as for the log-likelihood loss
(Problem 12.2):

Jop(x) = %log (1 f(jgx)> , T(x) =Py = 1]X =] (12.8)

Using functional gradient descent (FGD) with different loss functions yields dif-
ferent boosting algorithms. When using the log-likelihood loss in (12.4), we obtain
LogitBoost (Friedman et al., 2000) or BinomialBoosting from Section 12.4.4; and
with the exponential loss in (12.7), we essentially get AdaBoost from Section 12.2.2.

We interpret the boosting estimate f [m] (+) as an estimate of the population minimizer
£°(-). Thus, the output from AdaBoost, Logit- or BinomialBoosting are estimates
of the (log-odds ratio)/2. In particular, we define probability estimates via

pA[m] X)Z _ exp(f[m](x)) _ )
exp(f1"! (x)) +exp(—fI"l(x))

The standard loss function for support vector machines is the hinge loss:

phinge(fvy) - [1 _yf]va
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where [x]4 = X1~y denotes the positive part of x. It is also an upper convex bound
of the misclassification error, see Figure 12.1. Its population minimizer is again the
Bayes classifier

fginge(x) = sign(7(x) —1/2)

for ¥ € {—1,+1}, see also Problem 6.8 in Chapter 6. Since ft?inge(') is a classifier
and non-invertible function of 7(x), there is no direct way to obtain conditional
class probability estimates (that is, there is no unique solution in the equation above

to solve for 7(x) as a function of f]?mge (x)). Motivated from the population point of

Loss functions for binary classification
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Fig. 12.1 Losses, as functions of the margin 5/ = (2y — 1) f, for binary classification: misclassifi-
cation (0-1), hinge, negative log-likelihood and exponential loss.

view, the L- or L;-loss can also be used for binary classification. For ¥ € {0, 1},
the population minimizers are

S, = E[Y[X =] = m(x) = PY = 1}X =],

. lifw(x) >1/2

0 () _ — ) —

fr, (x) = median(Y[X = x) = {0 if 7(x) < 1/2.

Thus, a population minimizer of the L;-loss is the Bayes classifier. Moreover, both
the L;- and L;-loss functions can be parametrized as functions of the margin value

yf ()7 € {_1a+1}):
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|)77f| = |17}7f|5
V= f1P = 1 =5f = 1-25f + (G/)* (12.9)
The L;- and L;-loss functions are non-monotone functions of the margin value yf.

This is an undesirable property, implying that they assign a large loss if §f takes on
large values (greater than 1).

The negative log-likelihood loss in (3.5)

Prog—1ik (f,¥) = logy (1 +exp(—Ff)),

has three nice properties: (i) it yields probability estimates; (ii) it is a monotone
loss function of the margin value yf; (iii) it grows linearly as the margin value
yf tends to —oo, unlike the exponential loss in (12.7). The third point reflects a
robustness aspect: it is similar to Huber’s loss function which also penalizes large
values linearly (instead of quadratically as with the L,-loss).

12.4.3 Poisson regression

For count data with ¥ € {0,1,2,...}, we can use Poisson regression: we assume that
Y|X = x has a Poisson(A (x)) distribution and the goal is to estimate the function
f(x) =log(A(x)). The negative log-likelihood yields the loss function

p(y.f) = —yf+exp(f), f=Ilog(A),

which can be used in the functional gradient descent algorithm in Section 12.3.1.

12.4.4 Two important boosting algorithms

Table 12.1 summarizes the most popular loss functions and their corresponding
boosting algorithms. The two algorithms appearing in the last two rows of the table
are described next in more detail.

range spaces | p(f,y) | FEY) | algorithm
ye{0.1},f eR| exp(—(2y—1)f) [Llog( I’jﬁ;‘éx)) AdaBoost
y e {0,1},f € Rllog, (1 + e 2=Df) 3 log ( lfgf(x)) LogitBoost / BinomialBoosting
yeER,feR %\y—f|2 E[Y[X =x] LBoosting

Table 12.1 Various loss functions p(y, f), population minimizers f°(x) and names of correspond-
ing boosting algorithms; 7(x) = P[Y = 1|X = x].
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12.4.4.1 L,Boosting

LyBoosting is the simplest and perhaps most instructive boosting algorithm. It is
very useful for (high-dimensional) regression. Applying the general description
of the FGD Algorithm 7 from Section 12.3.1 to the squared error loss function
pL, v, f) = |y — f]?/2,! we obtain the following algorithm.

Algorithm 8 L,Boosting algorithm

1: Initialize f1%(-) with an offset value. The default value is fI(-) =Y. Set m = 0.

2: Increase m by one: m <— m+ 1.
Compute the residuals U; = Y; — f"=1(X;) fori=1,...,n.

3: Fit the residual vector Uy, ...,U, to X|,...,X, by the real-valued base procedure (e.g. regres-
sion)

base procedure I
— g
4: Up-date fi"l(.) = flm=1(.) 4 v.gl"(.), where 0 < v < 1 is a step-length factor (as in the
general FGD Algorithm 7).
5: Iterate steps 2 to 4 until m = mygp for some stopping iteration mgp.

(X, Uiy

The stopping iteration mgp is the main tuning parameter which can be selected
using cross-validation.

The derivation from the generic FGD Algorithm 7 in Section 12.3.1 is straight-
forward by noting that the negative gradient vector becomes the standard resid-
ual vector. Thus, L,Boosting amounts to refitting residuals multiple times. Tukey
(1977) recognized this to be useful and proposed “twicing” which is L,Boosting
using mgep =2 and v = 1.

12.4.4.2 BinomialBoosting: the FGD version of LogitBoost

We already gave some reasons at the end of Section 12.4.2 why the negative log-
likelihood loss function in (12.4) is very useful for binary classification problems.
Friedman et al. (2000) were first in advocating this, and they proposed LogitBoost
which is very similar to the generic FGD Algorithm 7 when using the loss from
(12.4): the deviation from the generic FGD is due to using Newton’s method involv-
ing the Hessian matrix (instead of a step-length for the gradient).

For the sake of coherence with the generic FGD algorithm in Section 12.3.1, we
describe here BinomialBoosting (Bithlmann and Hothorn, 2007) which is a version
of LogitBoost.

! The factor 1/2 leads to a convenient notation where the evaluated negative gradient of the loss
function becomes the standard residual vector.
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Algorithm 9 BinomialBoosting algorithm

Apply the generic FGD Algorithm 7 from Section 12.3.1 using the loss function pjoe—jix from
(12.4). The default offset value is £ (-) = log(p/(1 — p))/2, where p is the relative frequency of
Y=1.

With BinomialBoosting, there is no need that the base procedure is able to do
weighted fitting: this constitutes a slight difference to the requirement for Logit-
Boost (Friedman et al., 2000).

12.4.5 Other data structures and models

Due to the generic nature of boosting or functional gradient descent, we can use
the technique in very many other settings. For data with univariate responses and
loss functions which are differentiable (almost everywhere) with respect to the first
argument (the function f), the boosting algorithm is described in Section 12.3.1.

A slightly less standard example than regression or classification is survival analysis.
The negative logarithm of the Cox’ partial likelihood can be used as a loss function
for fitting proportional hazards models to censored response variables with boosting
algorithms (Ridgeway, 1999).

12.5 Choosing the base procedure

Every boosting algorithm requires the specification of a base procedure or weak
learner. This choice can be driven by the goal of optimizing the predictive capac-
ity only or by considering some structural properties of the boosting estimate in
addition. The latter has the advantage that it allows for better interpretation of the
resulting fitted model.

We recall that the generic boosting estimator is a sum of base procedure estimates

A

g[k](.)+f[0](.),

(ngE

e =v

k=1

Therefore, structural properties of the boosting function estimator are induced by a
linear combination of structural characteristics of the base procedure.

We discuss next some important examples of base procedures yielding useful struc-
tures for the boosting estimator f/(-). The notation is as follows: g(-) is an es-
timate from a base procedure which is based on data (X;,U;),..., (X,,U,) where
(U1,...,U,) denotes the current negative gradient vector (of the loss).
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12.5.1 Componentwise linear least squares for generalized linear
models

Boosting can be very useful for fitting potentially high-dimensional generalized lin-
ear models

Yi,....Y, independent

E[Yi|X; = x]) Zﬁ, :

as described in (3.1) in Chapter 3 (but we denote here the link function by A(-) in-
stead of g(+)). We have dropped an intercept term y which we implicitly incorporate
into the covariate x.

Consider the base procedure

g = f‘,X”)Ui/f(X,"”)z argmmz(y X, )2. (12.10)

i=1 i=1 1<j<p i=]

It selects the best variable in a simple linear model in the sense of ordinary least
squares fitting and uses the corresponding estimate }7] It is instructive to give the
equivalent formulation (Problem 12.3):

. UiX;
j= rgmaxu. (12.11)

Aler Y (X))

In case of centered predictor variables with n~! ?=1Xi<j ) = 0, this is saying that
J chooses the variable which maximizes the absolute correlation with the residual
vector.

When using the FGD Algorithm 7 (i.e. any of the gradient boosting methods) with
this base procedure, we select in every iteration one predictor variable, not neces-
sarily a different one, and we up-date the function linearly:

I () = fim 1 () + V?ﬁ,,x(fm>’

where fm denotes the index of the selected predictor variable in iteration m. Alter-
natively, the up-date of the coefficient estimates is

hlm—1 N o ”
A[m]z{ v i =
g i i j % Jon



400 12 Boosting and greedy algorithms

Thus, only the j,,th component of the coefficient estimate 3[”’] is up-dated. We sum-
marize that we obtain a linear fit f”(-) for the population minimizer f°(-) of the
loss function.

With L;Boosting (Algorithm 8) and the componentwise linear least squares base
procedure in (12.10) we obtain a linear model fit for every iteration m. As m tends
to infinity, f [m] (+) converges to a least squares solution. The method is also known as
matching pursuit in signal processing (Mallat and Zhang, 1993), weak greedy algo-
rithm in computational mathematics (Temlyakov, 2000), and it is a Gauss-Southwell
algorithm (Southwell, 1946) for solving a linear system of equations. We will dis-
cuss statistical properties of LyBoosting (Algorithm 8) with componentwise linear
least squares in Section 12.6.2.

Using BinomialBoosting with componentwise linear least squares from (12.10), we
obtain a fit, including variable selection, of a linear logistic regression model. The
reason is as follows. The loss function from (12.4) has 1,/2 times the log odds ratio
as population minimizer: f°(x) =log{z(x)/(1—m(x))}/2, see (12.5). Furthermore,
F"(x) is linear in x, as discussed above. And hence, since f"(x) is an estimate of
fO(x) =log{n(x)/(1 — m(x))} /2, we conclude that BinomialBoosting is fitting a
linear logistic regression model (whose fitted regression coefficients are to be multi-
plied by a factor of 2 when using the standard logit link log(7(x) /(1 — 7(x)) without
the factor 1/2).

As will be discussed in more detail in Section 12.6.2, boosting typically shrinks
the (generalized) regression coefficients towards zero. Usually, we do not want to
shrink the intercept term. In addition, we advocate to use boosting on mean centered
() :Xi(j) _xW

predictor variables X; . In case of a linear model, when centering also

the response Y; =Y, — 7Y, this becomes

ﬁm)?i(j) + noise;,

=<
~.
s

forcing the regression surface through the center (}(1)7 ... 7;(17 )757) =(0,0,...,0) as
with ordinary least squares and avoiding the use of an intercept term. Conceptually,
it is not necessary to center the response variables when using the default offset
value f1% =Y in the LyBoosting Algorithm 8 (for e.g. BinomialBoosting, we would
center the predictor variables only but never the response, and we would use f 0 =

argminz~! ¥ p(¥;,c)).
c i=1
12.5.2 Componentwise smoothing spline for additive models

Additive and generalized additive models have become very popular, allowing for
more flexibility than the linear structure in generalized linear models (Hastie and
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Tibshirani, 1990). We discussed in Chapter 5 how penalty-based methods can be
used to fit such models in high-dimensional problems. Here we show that boosting
can be used as an alternative procedure.

We use a nonparametric base procedure for function estimation. To fix ideas, we
consider the case where
8;j(-) is a least squares cubic smoothing spline estimate based on

Uy,...,U, against Xl(j), . ,X,Ej) with fixed degrees of freedom df. (12.12)

That is,

2i()= M%gin (w; (Ui —f(Xi(j))>2+/l/(f”(x))%lx) . (12.13)

where A > 0 is a tuning parameter such that the trace of the corresponding hat matrix
equals df. For further details, we refer to Green and Silverman (1994).

The base procedure is then
2(x) = g;(x),

. n NN
g;(-) as above and j = argminz (U,- ngj(Xi(]))> ,

I<j<p i=1
where the degrees of freedom df are the same for all §;(-).

LyBoosting (Algorithm 8) with componentwise smoothing splines yields an addi-
tive model, including variable selection, i.e., a fit which is additive in the predictor
variables. This can be seen immediately since LyBoosting proceeds additively for
up-dating the function f | (+), see Section 12.4.4. We can finally normalize to obtain
the following additive model estimator:

n! zf[-m](X»(j)) =0forall j=1,...,p.

1

Figure 12.2 illustrates such additive model fitting with componentwise smoothing
splines where the stopping iteration m has been selected with an AIC-type criterion
as proposed in Bithlmann (2004, 2006). The underlying model is

10 .
Y, = ij(xi(/>)+£,~, i=1,...,n=200,
j=1

Xi,...,X, ~ Uniform([0,1]7), p =100,
£l,...,& iid. ~.#(0,6%), 6> =0.5,
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Fig. 12.2 Additive model: n =200, p = 100. Black: true functions; Red: estimated functions using
L,Boosting with componentwise smoothing splines. Number of active variables is 10: there are one
false negative, two false positive, 9 true positive and 88 true negative (not shown) selections. The
figure is essentially taken from Biihmann (2004).

and €1,...,§, are independent of Xj,...,X,. The different functions f j(~), having
different “complexity”, are displayed in Figure 12.2. The model contains 90 noise
covariates. Based on one representative realization from this model, Figure 12.2
shows the function estimates f j for j=1,...,10, i.e., for the true active variables,
and also for two other variables which correspond to false positive selections where
fi(-) #0but f;(-) = 0. In total (among the p = 100 variables), there are 2 false posi-
tive and one false negative selections. We also see from Figure 12.2 that the boosting
additive model estimate yields a very reasonable fit, given the high-dimensional na-
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ture of the problem.? The three false selections are close to the true underlying func-
tions. Alternative estimators for high-dimensional additive models are discussed in
Chapter 5 and in Section 8.4: the theoretical properties are much better developed
for such ¢, /¢>-penalized estimators than for boosting.

The degrees of freedom in the smoothing spline base procedure should be chosen
“small” such as df = 2.5 which we used in Figure 12.2. This yields low variance but
typically large bias of the base procedure. The bias can then be reduced by additional
boosting iterations. This choice of low variance but high bias has been analyzed in
Biihlmann and Yu (2003) and we discuss it also in Section 12.5.4.

Componentwise smoothing splines can be generalized to pairwise smoothing splines
which searches for and fits the best pairs of predictor variables such that a smooth of
Ui,...,U, against this pair of predictors reduces the residual sum of squares most.
With L,Boosting (Algorithm 8), this yields a nonparametric model fit with first or-
der interaction terms (since we fit an additive combination of smooth functions in
two covariables). The procedure has been empirically demonstrated to work rather
well in high-dimensional problems (Biihlmann and Yu, 2006).

As with the componentwise linear least squares base procedure, we can use com-
ponentwise smoothing splines also in BinomialBoosting (Algorithm 9), yielding an
additive logistic regression fit. Conceptually, there is nothing special about choos-
ing a smoothing spline estimator in (12.13). One could use other (smooth) function
estimators, such as e.g. regression or P-splines (Schmid and Hothorn, 2008) which
are computationally more efficient than smoothing splines.

12.5.3 Trees

In the machine learning community, regression trees are the most popular base pro-
cedures. They have the advantage to be invariant under monotone transformations
of predictor variables, i.e., we do not need to search for good data transformations.
Moreover, regression trees handle covariates measured at different scales (continu-
ous, ordinal or nominal variables) in a unified way.

When using stumps, i.e., a tree with two terminal nodes only, the boosting estimate
will be an additive model in the original predictor variables, because every stump-
estimate is a function of a single predictor variable only. Similarly, boosting trees
with (at most) d terminal nodes results in a nonparametric function estimate having
at most interactions of order d — 2 (in our terminology, an additive function has
interaction degree equal to zero). Therefore, if we want to constrain the degree of
interactions, we can easily do this by constraining the (maximal) number of nodes
in the base procedure.

2 We should take into account that the covariates are generated independently and the noise vari-
ance 62 = 0.5 is rather small.
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12.5.4 The low-variance principle

We have seen above that the structural properties of a boosting estimate are deter-
mined by the choice of a base procedure. The structure specification should come
first. After having made a choice, the question becomes how “complex” the base
procedure should be. For example, how should we choose the degrees of freedom
for the componentwise smoothing spline in (12.12)? A general answer is to choose
the base procedure (having the desired structure) with low variance at the price of
larger estimation bias. For the componentwise smoothing splines, this would imply
a low number of degrees of freedom, e.g., df = 4.

We give some reasons for the low-variance principle in Section 12.6.1. Moreover,
it has been demonstrated in Friedman (2001) that a small step-size factor v in Step
4 of the generic FGD Algorithm 7 (or specialized versions thereof) can be often
beneficial and almost never yields substantially worse predictive performance of
boosting estimates. Note that a small step-size factor can be seen as a shrinkage
of the base procedure by the factor v, implying low variance but potentially large
estimation bias.

12.5.5 Initialization of boosting

We have briefly described in Sections 12.3.1 and 12.5.1 the issue of choosing an
initial value f°! (+) for boosting. This can be quite important for applications where
we would like to estimate parts of a model in an unpenalized (non-regularized)
fashion and others being subject to regularization.

For example, we may think of a parametric form of f [0} (+), estimated by maximum
likelihood, and deviations from the parametric model would be built in by pursu-
ing boosting iterations (with a nonparametric base procedure). A concrete example
would be: f%(-) is the maximum likelihood estimate in a generalized linear model
and boosting would be done with componentwise smoothing splines to model addi-
tive deviations from a generalized linear model. A related strategy has been used in
Audrino and Biihlmann (2003) for modeling multivariate volatility in financial time
series.

Another example would be a linear model Y = X3 + € as in (12.19) where some
of the covariates, say the first g predictor variables X ('), X (q), enter the esti-
mated linear model in an unpenalized way. We propose to do ordinary least squares
regression on X1, X(@): consider the projection P, onto the linear span of
XM, ... X and use L,Boosting (Algorithm 8) with componentwise linear least
squares on the new response (I — F,)Y and the new (p — ¢)-dimensional predictor
(I — P;)X. The final model estimate is then
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p
A [Mstop] o(
Ls,J AU Z ; )
Jj=q+1

T Me

where the latter part is from L,Boosting and %) is the residual when linearly re-

gressing D to x(D ) XD A special case which is used in most applications is
with ¢ = 1 and X(! )= =1 encoding for an intercept. Then, (I —P;)Y =Y —Y and
(I—P)XD) =x0) —p~tyn ). This is exactly the proposal at the end of Sec-

tion 12.5.1. For generahzed hnear models, analogous concepts can be used.

12.6 L,Boosting

As described in Section 12.4.4.1, the LyBoosting Algorithm 8 is a functional gradi-
ent descent using the squared error loss which amounts to repeated fitting of ordi-
nary residuals. Here, we aim at better understanding of such a simple L,Boosting
algorithm. We first start with a toy problem of curve estimation and we will then
describe a result for high-dimensional linear models.

12.6.1 Nonparametric curve estimation: some basic insights about
boosting

We study the toy problem of estimating a regression function E[Y|X = x] with one-
dimensional predictor X € 2~ C R and a continuous response Y € R in the following
model:

Y, = fO )+ &, i=1,.
€1,...,8& i.id. with E[si] = 0, Var(g;) = 62, (12.14)

where f0(-) is a real-valued, typically nonlinear function, and the predictors X; €
2 C R are deterministic.

Consider the case with a linear base procedure having a hat matrix .72 : R" — R”
(not necessarily symmetric), mapping the response variables Y = (V1,...,Y,)"
to their fitted values (f(Xi),...,f(X,))". Examples include nonparametric kernel
smoothers or the smoothing spline in (12.13). Then, the hat matrix of the L, Boosting
fit (for simplicity, with f Of=0andv = 1) in iteration m equals (Problem 12.4):

By = By + A1 — Byy_1) =1—(1—H)". (12.15)

Formula (12.15) allows for several insights. First, if the base procedure satisfies
|II — | < 1 for a suitable norm, i.e., it has a “learning capacity” such that the
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residual vector is shorter than the input-response vector, we see that %, converges
to the identity I as m — oo, and %,,Y converges to the fully saturated model Y,
interpolating the response variables exactly. Thus, we exploit here explicitly that we
have to stop early with the boosting iterations in order to prevent over-fitting.

When specializing to the case of a cubic smoothing spline base procedure, see
(12.13), it is useful to invoke some eigen-analysis (the generalization to a smoothing
spline of order r is treated in Theorem 12.1 below). The spectral representation is

A =UDUT, UTU =UUT =1, D= diag(A4,..., ),

where 4| > A, > ... > A, denote the (ordered) eigenvalues of 7. It then follows
with (12.15) that

By =UD,U",
Dy = diag(dymy - - ydum)y dim=1—(1-1)".

It is well known (Green and Silverman, 1994) that a cubic smoothing spline satisfies:
M=Xk=1, 0<A<1(i=3,...,n).

Therefore, the eigenvalues of the boosting hat operator (matrix) in iteration m sat-
isfy:

dim = dp» =1 for all m,
O0<dim=1-(1-A)"<1(i=3,...,n), dim—1(m— o).

When comparing the spectrum, i.e., the set of eigenvalues, of a smoothing spline
with its boosted version, we observe the following. For both cases, the largest two
eigenvalues are equal to 1. Moreover, all other eigenvalues can be changed by either
varying the degrees of freedom df =Y | 4; in a single smoothing spline, or by
varying the boosting iteration m when using a fixed (low-variance) smoothing spline
base procedure having fixed (low) values A;. In Figure 12.3 we demonstrate the
difference between the two approaches for changing “complexity” of the estimated
curve in this toy example (first shown in Biihlmann and Yu (2003)). Both methods
have about the same minimum mean squared error but L,Boosting overfits much
more slowly than a single smoothing spline.

By careful inspection of the eigen-analysis for this simple case of boosting a
smoothing spline, Biihlmann and Yu (2003) proved an asymptotic minimax rate
for the mean squared error

! iE[(f[’”] (X)) — (%)%, (12.16)
=1

We make the following assumption on the design points:
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Fig. 12.3 Mean squared prediction error E[(£(X) — f°(X))?] for the regression model ¥; = 0.8X; +
sin(6X;) + & (i =1,...,n=100), with ¢ ~ .47(0,2),X; ~ Uniform(—1/2,1/2), averaged over
100 simulation runs. Left: L, Boosting with smoothing spline base procedure (having fixed degrees
of freedom df = 4) and using v = 0.1, for varying number of boosting iterations. Right: single
smoothing spline with varying degrees of freedom. The figure is taken from Bithlmann and Hothorn
(2007).

(A)  The predictor variables X, ..., X, € [a,b] (—oo < a < b < o) are deterministic
and satisfy: there exists a positive constant B such that for every n,

SUP.eq,p) inf1<i<n [X — Xi

: <B< .
infy<izj<n |Xi — X}

Assumption (A) holds for the equidistant design and is almost surely fulfilled for

i.i.d. realizations from a suitably regular probability distribution on [a,b]. Denote
the Sobolev space by

b
F) = {f: f (r—1)-times continuously differentiable and / (f7) (x))%dx < oo}.

The smoothing spline corresponding to smoothness r is then defined as

&) = argmin ™ Y. (U - g 42 [(¢(0Pdx,  (1217)
g()eF ™ i=1

for data (X;,U)),...,(Xy,Uy).

Theorem 12.1. Consider the model in (12.14) with X; € [a,b] satisfying (A). Sup-
pose J is a smoothing spline §;, ,(-) corresponding to a fixed smoothing parame-
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ter Ay and smoothness r € N, as in (12.17). If the true function f° is in FE) with
E>r (&, r €N), then there is a boosting iteration m = m(n) = O(n*/25+1)) —
oo (n — o) such that f"(-) achieves the optimal minimax rate n=25/25+1) of the
function class Z) in terms of MSE as defined in (12.16).

A proofis given in Section 12.8.1. Two items are interesting. First, minimax rates are
achieved by using a base procedure with fixed degrees of freedom which means low
variance from an asymptotic perspective. Secondly, L, Boosting with cubic smooth-
ing splines has the capability to capture higher order smoothness of the true under-
lying function (without the need of choosing a higher order spline base procedure).
Asymptotic convergence and minimax rate results have been established for early-
stopped boosting in much more general settings by Yao et al. (2007) and Bissantz
et al. (2007).

12.6.1.1 L,Boosting using kernel estimators

As pointed out above, L,Boosting of smoothing splines can achieve faster mean
squared error convergence rates than the classical O(n"‘/ 3), assuming that the true
underlying function is sufficiently smooth (corresponding to r = 2 in (12.17)). We
illustrate here a related phenomenon with kernel estimators.

We consider fixed, univariate design points X; =i/n (i =1,...,n) and the Nadaraya-
Watson kernel estimator for the nonparametric regression function E[Y |X = x|:

g h) = (nh)™! iK(x_hXi)Yi =n"! iKh(x—Xi)Yi

1

where & > 0 is the bandwidth, K(-) a kernel in the form of a probability density
which is symmetric around zero and Kj,(x) = h~'K(x/h). It is straightforward to
derive the form of L,Boosting using m = 2 iterations (with /) =0and v = 1), i.e.,
twicing (Tukey, 1977) with the Nadaraya-Watson kernel estimator:

fm(x):(nh)*liK},W(x—Xi)x» K™ (u) = 2K, (u) — Ky % Ky (1), (12.18)
=1

1

where K, * Kj,(u) = n='Y"_, Kj(u — X,)K,(X,) (Problem 12.5). For fixed design
points X; = i/n, the kernel K}"(-) is asymptotically equivalent to a higher-order
kernel (which can take negative values) yielding a squared bias term of order O(h?),
assuming that the true regression function is four times continuously differentiable.
Thus, twicing or LyBoosting with m = 2 iterations amounts to be a Nadaraya-Watson
kernel estimator with a higher-order kernel. This explains from another angle why
boosting is able to improve the mean squared error rate of the base procedure. More
details including also non-equispaced designs are given in DiMarzio and Taylor
(2008).
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12.6.2 LyBoosting for high-dimensional linear models

We look here at the problem of fitting a high-dimensional linear model which we
have extensively treated in Chapters 2 and 6 when using the Lasso. Consider the
linear model as in e.g. formula (2.1) in Chapter 2:

P
Z +e,, i=1,...,n, (12.19)

where €1,...,¢, are i.i.d. with E[g;] = 0 and independent from all X;’s, and we allow
the number of predictors p to be much larger than the sample size n.

Estimating the model (12.19) can be done using LpBoosting with the componen-
twise linear least squares base procedure from Section 12.5.1 which fits in every
iteration the best predictor variable reducing the residual sum of squares most. This
method has some basic properties which are shared by the Lasso as well (see Section
12.6.2.1): when stopping early which is needed to avoid over-fitting, the L2Boost1ng
method (often) does variable selection, and the coefficient estimates [3 " are (typi-
cally) shrunken versions of a least squares estimate ﬁOLs

12.6.2.1 Connections to the Lasso

Hastie et al. (2001) pointed out an intriguing connection between LyBoosting with
componentwise linear least squares and the Lasso. Efron et al. (2004) made the con-
nection rigorous and explicit: they consider a version of LyBoosting, called forward
stagewise linear regression (FSLR), and they show that FSLR with infinitesimally
small step-sizes (i.e., the value v in step 4 of the L,Boosting algorithm in Section
12.4.4.1) produces a set of solutions which is equivalent (as step-sizes tend to zero)
to the set of Lasso solutions when varying the regularization parameter A in the
Lasso

B =argmin<IY—XﬁII%/nHIﬁIIl).
B

However, such an equivalence only holds if the design matrix X satisfies a restrictive
“positive cone condition” (Efron et al., 2004).

We briefly illustrate the similarity between L,Boosting and Lasso for the riboflavin
data (p = 4088), described in Section 9.2.6, but using here a more homogeneous
(sub-)sample of size n = 71. We estimate a high-dimensional linear model, once
with Lr,Boosting using componentwise linear least squares and step-size v = 0.1,
and once with the Lasso. We regularize both methods such that 32 variables among
the p = 4088 variables are selected, by appropriately choosing the stopping iteration
or the penalty parameter, respectively. Among these 32 variables from each method,
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22 are selected by both L,Boosting and Lasso: thus, the overlap of jointly selected
variables is quite remarkable. Furthermore, Figure 12.4 shows the estimated coeffi-

Lasso and L2Boosting

0.4
1

0.2

coefficients
0.0

-0.4
I

-0.6
I

T T T T
5 10 15 20

variables selected by both methods

Fig. 12.4 Linear model coefficients for riboflavin data (n = 71, p = 4088). Estimated coefficients
from Lasso (black) and L,Boosting (red) of 22 variables which are selected by both methods,
where each method alone chooses 32 variables. The 10 estimated coefficients corresponding to
variables which are selected by one of the methods only have values in the range [—0.07,0.18].

cients [§ ; of these 22 variables: for each among the 22 variables, the estimates from
L,Boosting and Lasso exhibit consistently the same sign and in fact, their numeri-
cal values are quite close to each other. The coefficients corresponding to variables
chosen by one of the methods only are relatively small, in a range of [—0.07,0.18].

Despite the fact that L,Boosting and Lasso are not equivalent methods in general, it
may be useful to interpret boosting as being “related” to ¢;-penalty based methods.

12.6.2.2 Asymptotic consistency in high dimensions

We present here a result on asymptotic consistency for prediction in the high-
dimensional but sparse linear model as in (12.19). To capture the notion of high-

dimensionality, we use a triangular array of observations as described in formula
(2.6) in Section 2.4:
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Pn B
Yii= Y BUXY e, i=1,m n=1,2,... (12.20)
=1

and we use the short hand notation Y = X80 + &.

We make the following assumptions.
(A1) The number of covariates p, in model (12.20) satisfies

log(pn)/n— 0 (n— o).
(A2) The covariates are deterministic (fixed design) and scaled
n .
Y (XU =1 forall j=1,...,p,,
i=1

and the model is sparse with respect to the £;-norm

P
O, = 01—of J—2 ) (n=s o).
1680 = 3 188 =0 gty ) (1

J=1
and the regression function satisfies

n

IXBIE/n=n""Y (fO(Xui)® < C <o foralln €N,
i=1

where f9(x) = xBY.

(A3) The errors satisfy
Enl,- . Enpiid. ~ A (0,67) forall n € N.
with 0 < 02 < oo,

Assumption (Al) is standard in high-dimensional asymptotics, as discussed in
Chapter 6. The scaling in assumption (A2) is without loss of generality and the
{1-norm sparsity assumption is as for the Lasso (see below). The third assumption
in (A2) says, together with assumption (A3), that the signal to noise ratio is not in-
creasing as n — co. Assumption (A3) is made to simplify the mathematical analysis
but it could be relaxed to assuming 4th moments E|g,;|* < M < o only, see Sec-
tion 14.5.3 in Chapter 14, and under additional assumptions on the design we can
further relax to assume second moments only, see Problem 14.6 in Chapter 14. The
following theorem is a refinement of a result in Biihlmann (2006).

Theorem 12.2. Consider the model (12.20) satisfying (Al)-(A3). Then the L Boosting

estimator f,E’"] (+) with the componentwise linear least squares base procedure satis-

fies: for
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my — , my = 0( I’l/lOg(pn)) (I’l — 00)7

we have,
IX(B™ = BR)3/n = 0p(1) (n— o).
3-5
Furthermore, for m, = K log( " 20 with any constant 0 < K < o0 and 0 < 8 <
5/8, we have

IR = B 3/ = 0 s {/2E22)° g o !

A proof is given in Section 12.8.2. We note that the assertion of the theorem is about
prediction in terms of n= ' Y, (£ (X,,.;) — £0(X,.;))?: the presented rate is best for
0 > 0 close to zero resulting in

0p max{ M "Bl ]}

for any 0 < 6'(< 5/44) (and the upper bounds for & and 8’ are not of special inter-
est). Such a consistency result for prediction also holds for the Lasso, as described
in formula (2.7) in Chapter 2 or with more details given in Corollary 6.1 in Section
6.2.2. For consistency of the Lasso, we also need || B,|/1 = o(y/n/log(p,)) (n — o)
(see Corollary 6.1), as in the second part of assumption (A2). Furthermore, both
of the consistency results for L,Boosting with componentwise linear least squares
and for the Lasso hold for arbitrary designs without any compatibility or restricted
eigenvalue conditions. In terms of rate of convergence, without assuming compati-
bility conditions, the Lasso achieves

)

X (Bral®) ~ B2V 3/n = 0 18511 <2221 )

when choosing A =< +/log(py)/n, as described in Corollary 6.1. This rate is also
achieved with L,Boosting if || 80||; is sufficiently large, i.e., for

3-§
Vn/1og(pn) @ < ||BYl1 < /n/log(p),

(the left-hand side is small for § > 0 close to zero) while for small |||} = O(1),

1_ g/
we achieve a convergence rate O(+/log(pn)/n* ° ) for any 0 < 8'(< 5/44) when
choosing m, as in Theorem 12.2 with § = 88'/(48’ +1).
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12.7 Forward selection and orthogonal matching pursuit

For high-dimensional generalized linear models, it is straightforward to pursue for-
ward selection. At first sight, this resembles the FGD boosting Algorithm 7 in Sec-
tion 12.3.1. Consider the generalized linear model as in formula (3.1) in Chapter
3:

Yi,.... Y, independent

g(E[Y;|X; = x]) Zﬁ] ,

where g(-) is a real-valued, known link function and for simplicity, we absorb an
intercept term into the right hand side of the equation above. Associated with this
model, we have a loss function p(-,-) and an empirical risk

p(B)=n""Y ps(X. 10,
=1

as described in Section 3.2.1; the notation for the empirical risk is just an abbrevia-
tion indicating the dependence on the loss p and the parameter 3. Forward variable
selection proceeds as follows. In every iteration m = 1,2,..., we have a previous
active set of variables

sl=c {1, p).
We are then looking for a single additional variable reducing the empirical risk most

when refitting all the previous coefficients. This can be formalized as follows. For a
subset S C {1,...,p}, Bs € R? is defined as

ﬁj? jES,
ﬁfs_{o, jés.

We estimate the coefficients corresponding to S by

Bs = argminp (Bs), (12.21)

Bs

where the minimization is done only over the components corresponding to S. For-
ward variable selection then searches in every iteration m for the best single variable
with index j,,, in conjunction with the previous active set S" !/, for reducing the
empirical risk most:

fm - a.rgmln P (Bs[ln—l]u{j}) (1222)
je{l,...py\Skm=1

and the new active set is then
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sl = stn=1y 7).

The algorithm is summarized in Algorithm 10. The main difference to boosting and

Algorithm 10 Forward variable selection

1: Initialize the active set of variables S = 0.

2: repeat

3: Increase m by one: m <— m—+ 1.

4 Search for the best variable reducing the empirical risk most:

Jm as in (12.22).
5:  Update SI" = slm=1y {Jjm} and the corresponding estimator is denoted by
pml
fFWD = xﬁs[m]

as defined in (12.21).
6: until m reaches a stopping value mgp.

the FGD algorithm in Section 12.3.1 is that all coefficients in the active set S are
re-fitted. From an approximation point of view without noise, this is desirable as
the numerical convergence to a minimum is (typically) much faster. For example,
when considering the squared error loss and in absence of noise, fg\',l\],D (x)=x AIL'@D
converges to the true underlying f°(x) at rate m ™'/ whereas with L,Boosting using
componentwise linear least squares, the corresponding convergence rate is m~1/0
(Temlyakov, 2000). However, when having substantial noise with low signal to
noise ratio, the more slowly proceeding boosting algorithms have been empirically
found to perform substantially better, see also Table 2.1 for the example in Section
2.4.1. So far, this empirical phenomenon is not well understood from a theoretical
point of view.

12.7.1 Linear models and squared error loss

For linear models with squared error loss and empirical risk

(Y;—X;B)%,

™=

p(B)=n""]

1

formula (12.22) is rather explicit and can be computed recursively based on the fitted
model in the previous iteration (see also Problem 12.7). A closely related version is
described next.
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12.7.1.1 Orthogonal matching pursuit

We have seen that L,;Boosting with componentwise linear least squares, also called
matching pursuit, chooses the variable with index j satisfying

J= argmax Si=lmr IUX( i’
j n ](X(J))Z

1= 1

(12.23)

where U; is the current ith residuum U; = Y; — f P”’”(X,-), see (12.11). The idea
of orthogonal matching pursuit, summarized in Algorithm 11, is to use the same
selector j which reduces residual sum of squares most: but then, we re-estimate

all coefficients using least squares and hence the residuals are U; = Y; — fO";AP]]( Xi)

where fgﬁpl] (+) is based on least squares estimation. The difference to the forward

Algorithm 11 Orthogonal matching pursuit
0] = g.

1: Initialize the active set of variables S
2: repeat

3:  Increase m by one: m < m+1.

4: Search for the best variable

o asin (12.23).

o

Update St = st U {j,}.
6: Estimate the coefficients by least squares

A . 2
B = argmin | Y — X Bgin |/,
Byl
where Xg is the n x |S| sub-design matrix corresponding to the variables from S C
{1,...,p}. Denote the estimate by
ﬂl]
OMP = IBS [m]

7: until m reaches a stopping value mp.

selection Algorithm 10 is that the selector j,, may not be exactly the same: in the
orthogonal matching pursuit Algorithm 11 we select the variable before refitting all
others from the previous active set St while the forward selection Algorithm 10
selects the variable which is best when having refitted all other coefficients from
Siml The difference between the methods is usually small and orthogonal matching
pursuit is computationally faster. See also Problem 12.7. Comparing the orthogonal
matching pursuit Algorithm 11 with L,Boosting (i.e. matching pursuit) we see that
the latter is not re-estimating the coefficients from the previous active set. This is a
major difference, and the connection to the Lasso, see Section 12.6.2.1, only holds
when dropping the refitting of the coefficients. Thus, what seems a-priori naive,
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i.e., not re-estimating coefficients, turns out to have an interesting connection to
{1 -penalized methods.

From a theoretical perspective, orthogonal matching pursuit (Algorithm 11) has de-
sirable properties (Tropp, 2004; Tropp and Gilbert, 2007) which are comparable
to ¢;-penalization. We develop here a consistency result for prediction in a high-
dimensional sparse linear model. To capture the notion of high-dimensionality, we
consider the triangular array model as in (12.20):

Pn .
Yii= Y BOXY e i=1,m n=1,2,... (12.24)
=1

and we use the short hand notation Y = X80 + ¢.

We make exactly the same assumptions as for for prediction consistency of L,Boosting
in a high-dimensional linear model in Section 12.6.2.

(B1) The number of covariates p, in model (12.24) satisfies

log(pn)/n— 0 (n — o)

(B2) The covariates are deterministic (fixed design) and scaled

n! (Xm)2 =l1forallj=1,...,p,

n;i

(ngE

1

and the model is sparse with respect to the ¢;-norm

18] =J_i|ﬁ,?;, :(@)

and the regression function satisfies

(fO(X,w-))2 <C<eooforallneN,
1

IXBl3/n=n"

n
=

where f0(x) = xB°.
(B3) The errors satisfy

Enils- - Epp iid. ~ A (0,67)
with 0 < 62 < oo,
Theorem 12.3. Consider the model (12.24) satisfying (BI)-(B3). Then the orthogo-

nal matching pursuit estimate ﬁ’gﬂp;n satisfies: for m, — oo, m, = O(log(p,)) (n —

o),
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IX(Boien — B2 15/n = 0p(1) (n = ).
Alternatively, the same result holds for m, — o, m, = o(n (max{1,||B2(|3})~").

Furthermore, assuming that ||B0|y > B > 0 for all n € N, and choosing m, =
K||[3,(,)||1_2/3nl/3 with any constant 0 < K < oo, we have,

~ _ log(px
I (B B/ = On {18212/, 880022} ) 1

A proof is given in Section 12.8.3. The theorem is about prediction and as such, it
should be compared to analogous results for LyBoosting in Theorem 12.2 and to the
Lasso as described in formula (2.7) from Chapter 2 or in more details in Corollary
6.1 in Section 6.2.2. All of the methods are consistent when assuming the same
condition on ||BY|; = o(/n/log(p,)) and making no assumptions on the design.

For the Lasso without additional assumptions on the design, we have the conver-
gence rate

A log(p
IX(Braso() - B3/ = On 18511 <2221 ).
when choosing A =< +/log(p,)/n, as described in Corollary 6.1. This rate is also
achieved for orthogonal matching pursuit if ||30||; is large, namely in the (small)

range
n n
———1log(px) ' < |IBYII1 < F
log(p.) fox(p)

In comparison, L,Boosting achieves the same convergence rate in a typically larger
range of values for ||3°]|;, see end of Section 12.6.2.2. Finally, it is worth empha-
sizing that all the mentioned results for consistent high-dimensional prediction with
the Lasso, L, Boosting or orthogonal matching pursuit do not make any (restrictive)
assumptions on the fixed design. When making additional assumptions on the de-
sign, we have shown in Chapter 6 that Lasso achieves a much faster convergence
rate. We do not give an analysis of orthogonal matching pursuit under additional
design conditions but we refer to Zhang (2009a) for further results.

Our theoretical viewpoints on consistent high-dimensional prediction yield little in-
sights about the finer differences of the methods for finite sample sizes. In high
noise problems, LyBoosting or ¢;-penalization seem to have better empirical pre-
dictive power, see also Table 2.1 for the example in Section 2.4.1.
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12.8 Proofs

12.8.1 Proof of Theorem 12.1

The proof is taken from Biithlmann and Yu (2003). Let .7# be the smoothing spline
operator corresponding to smoothness r and with smoothing parameter ¢ = Ay (to
avoid notational confusion with eigenvalues). It is well-known (cf. Wahba (1990,
p.61)) that the eigenvalues of 7 take the form in decreasing order

nqin
M=.=A=1 4 =——>—fork=r+1,..,n
! " ¢ naO"'nCIk,n

Moreover, for n large, gy, ~ Ak = Agq where A is universal and depends on the
density of the design points X;. Let ¢y = ¢/A, then

A ~

fork=r+1,...,n
€0+ gk

From (12.15) we know that the boosting operator in iteration m has the spectral
representation %,, = UD,, U’ with eigenvalues D,, = diag(dy m,-..,dnm) where
dim =1—(1—2;)". Denote by

u=U’s.

For the true function f € .# (),

- Z Uk <M < oo,
n k=r+1
First, consider the bias term:
n

bias®(m; f) = n~' Y (ELA" (X)) - (%))

i=1
-1 UT T T *l’l_l 2m 2.
W ) (D, I k%

‘We can bound it as follows.

1 n
bias?(m; f) = — Z (1—2)*"u

:

n

Z (1—qi/(co+qu)>"k > ugk®
+
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< max (l—lIk/(Co-HIk )"k x Z gk
L Ly St}
1 n
= max exp(h(k)) x = Y ik,

k=r+1

where

h(x) — IOg[(l 7x—2r/(60 +x—2r>)2mx—2V]
= 2mlog(1—1/(cox™ +1)) — 2vlog(x).

Taking derivative gives

2r 1

H)=2
(x) X cox2"+1

2m — %(coxb +1)].

Hence for any given positive integer ny, if x < n; and m > 3= (con{” + 1), h(x) is
increasing and so is exp(%(x)), and

exp(h(x)) < exp((h(n1)) = (1—1/(cont” +1))*"n;>".

On [n; +1,n],
exp(h(x)) < (1—1/(con® +1))*"n;?".

Putting them together we get for growing n; and m > - (conl’ +1),
bias®(m; f) < O(Mny ' [2(1—1/(con™ +1))*"*?])

which is of the order O(n;zv) for ny — co and ny < n.

Now let’s deal with the variance term. For any n; > r,

variance(m; 62) = n~! ZVar(f,gm) (X;)) = n"'trace(Cov(%,Y))

= O;trace(D,Zn) = %2 <r+ i (1—(1 —Kk)m)2>

k=r+1
2 2 n
o°n (e}
<22+ Y 0-(1-)™? =1 +1.
n n k=n1+1
1

Because (1 —x)* > 1—axforanyx € [0,1] anda > 1,
—(1=2)" <1—(1—mk) = mh.

It follows that
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62 n 2.2 n 1
L < —
n

242 o m
k:§+l n k:§+l (cok?r +2)?

IN

oim? & 1 oim? [ 1
vy S / v
noo (cok?") noJn (cox?")

om?

- - 4r < 0
c(2)(4r—1)nn1/nl — (n]/l’l),

if we take m = m(n1) = 3=(coni" +1) = O(n?"). Hence for this choice of m(n;),
variance(m(n;);6°) < O(ny /n).

Together with the bound for the bias we get
n Y E((F0G) - (X)) < O(ni /n) + O(ny ).
i=1

For minimizing this expression, we take 7, = O(n'/V+1)) and for m(n) = m(n;) =
O(n?/2v+1): the minimized MSE has the minimax optimal rate O(n2"/(2V+1)) of
the smoother function class .7 (V). O

12.8.2 Proof of Theorem 12.2

We closely follow ideas from Temlyakov (2000) for the analysis of the “weak greedy
algorithm” in the noise-free case. The proof here is self-contained, and simpler and
more general than in Bithlmann (2006).

For vectors u,v € R”, denote by
1 n
(u,v)p=n" Z upv;
i=1

the (scaled) Euclidean inner product in R”. We also use the notation f = (f(X),...,
F(X,)T for the n x 1 vector for a function f(-) defined on the covariate space.
Furthermore, define by

the vector of the jth covariable.

Without loss of generality, we assume that the constant C in assumption (A2) satis-
fies:

IXBOII = 1115 < 1.
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This can be achieved by scaling for the case 1 < C < o and noting that due to C < oo,
the scaled version has still bounded error variances from below.

Denote the remainder term (residuals) in iteration k by
REfO = 0 _ 7K,

Here and in the following, we suppress the index 7 in R¥ 0, f* and the true regres-
sion function f°. A straightforward calculation leads to:

1RSI = IR 1R — 10— FE 1y )l + ey P (1229)

We use the short-hand notation

ax = [R5
As described in Lemma 6.2 in Section 6.2.2 from Chapter 6:
A, = jil}aXpKS, Wj)n‘ = OP(\/ 10g(pn)/1’l). (12.26)

Thus, (12.25) and (12.26) lead to the bound

ar < a1 — (RO 95 )0+ A (12.27)

Next, we want to relate [(R*! %, y; )| and its “noisy” version |(Y — fle=1]

with max; [(R¥1 9 w;),

>Wfk)’l|

; note that the selector fk is constructed from

Ji = argmax (Y —f[kflh Vi)l
j=1,...p

Lemma 12.1. If for some 0 < kK < 1/2

max |(R<1 0, y)),| > 24, /x,

j=1,...p
then
B w0nl = (1= ) max (B £ p))
(V=5 gl > (1= x/2) max [(RLF0, w3l
Proof. We have

pk—1 0 _ Alk—1
(RO, w5 )l = (Y = £ w5 ) = (8,5 )l
> (Y = fE i al = Aw = max | (¥ 7y, -4,

= mj?lx |(1§k71f0a Vin+ (&, W))n| — An = mjax|(]ék71f0, Vj)n| —24,.
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Hence, since —24, > —kmax; |(RF1£0, V;)n| (assumption of the lemma),
|(Rk7]f0a ‘I’jk)11| > (1-x) m?X‘(kalfO’ Yi)n-
Furthermore, analogously as above,
(Y = 757y )] = max | (Y = 7571 y),
Jk i J

> maX|(Rk7]f0>‘//j)n| —Ay > (1- K/2)maX|(1?k*]f0,llfj)n|~
j J

O
Denote by
dy = |(Y_]?[k71]a ‘l’jk)n|~
‘We then have:
a = RO = 1RO — (Y= %y s 2
= Q-1 +d]% - Z(Y - f[kil] ) Wfk)n(ékilfoa Wfk)n
< ag—1 7d]% +2dk(8, l]/fk)n.
Thus, instead of (12.27), we obtain
ay < ag_y —d? +2diA,. (12.28)

We now establish a decay of a; in terms of a fraction of d,?.

Lemma 12.2. If for some 0 < k < 1/2

max (R0 yl = k(1= k/2) 24,
J=Lep

then

ax < a1 — (1—K)dj.

Proof. The assumption of the lemma implies:

2

K
(1-x/2)

where in the second inequality, we have used the second assertion in Lemma 12.1
(and the assumption of the lemma implies the assumption of Lemma 12.1). Together
with (12.28), this completes the proof. O

2di Ay < k(1 —K/2)dpmax |(R £ w)) | < k(1 —K/2) = Kkd?,
J

We now follow Temlyakov (2000, proof of Th. 5.1). Consider the recursion
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bo=IBYll1, b = br—1 +d. (12.29)

Using that 0 = Zle BJO v, we can write
pk—1 0 Z
REP=Y vy, v <t (12.30)
j=1

Furthermore, for any vector g = ):f:l Ciyj:

liglly < lellr max |(g. vl (12.31)
The derivation is left as Problem 12.6.
Therefore, using (12.30):

jmax (RO, 9l > ax1 /by (12.32)

Then, under the conditions of and using the second assertion in Lemma 12.1:

dy > (1-x/2) m?X|(1ék*1f0, Vj)al > (1= K/2)ar1 /b1,

and hence

4> (1—x/2)ar

> (12.33)
b

From Lemma 12.2 and (12.33) we obtain (under the assumption of Lemma 12.2):
ap < gy (1 —(1—x)(1— K/z)Z“’;—l) .
b
In the sequel, we abbreviate by
Ce=VI—k(1—k/2) (0<Kk<1/2).
Since by < by we get:
arb? < ag_1b % (1 CRar—1b %) . (12.34)
Furthermore,
aohy? < 17117, (1235)

using w.l.o.g. the scaling || f°||2 < 1, see above.

We now assume that the condition of Lemma 12.2 holds for k = 1,...,m: that is, we
consider the event
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B, (m) =N { max (RTF0 wi)al > 71 (1—x/2)7124,}. (12.36)
j=1,....p

Then, on B, (m), and using (12.34) and (12.35), we can invoke Lemma 12.3 below
to obtain

_ _ —1
amby,” < ||BYIIT 2 (14 Cam) (12.37)

Lemma 12.3. (DeVore and Temlyakov (1996)) Let {cy}men, be a sequence of non-
negative numbers such that

c0<D, cpn<cmi(l—ocu_1) O<a<l).
Then,
cm <D(14+am)™".
We refer to DeVore and Temlyakov (1996) for a proof.
Furthermore, Lemma 12.2 and (12.33) imply on B, (m):

am < A1 — (1 - K)dy%z <ap-1— (1 - K)(l - K/z)dmam—l/bm—l

Dyd,
=y [ 1—-2), (12.38)
bm—l

where we denote by Dy = (1 — k)(1 — k/2). The recursion for b, can be written as
by =bu_1(1+dp/bp-1).
This, together with (12.38) and the inequality
(I+uw)*<l1+ou, 0<a<l1,u>0,

leads to

D.d d
;7’1")1)2510 +DK#I> < 125 .

amb£’< <am_1(1—
: _ IR0
Thus, using that by = ||8,||; and ap < 1
ambo* < am_1box | <. < agby* < [|BY7F

Combining this with (12.37) we obtain:

G?JFD” = (amb,f)DK (ameK )2

0(|—2Dx 2 \—Dy||R0[|2Dx _ 2 Dy
< |IBYII 2% (1 4+ Com) ™ Px (B 7% = (1+Com) ~Px.
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Since for 0 < k¥ < 1/2,

CEZD" — ((1 o K)(l o K/2)2)*(1*K')(1*K'/2) S 2’

we obtain the bound
a,z,fD" < 2m Prx,
Thus,

am 0112 1 Dk _ Dk
onB,(m): |[R"f°|; =am <2%Dem Zbx <2m Dk (12.39)

Now we analyze the behavior of a,, on
B,(m)¢ ={ there exists k* (1 <k* < m) such that

max [(R 10yl < (- k/2) 7124,
J=l..p

First, due to (12.25):
IR™ £OI[7 < [1R™ Ol + An < . < RSO+ (m— k) A

Furthermore, using (12.32) and the definition of the sequence by (k =0,1,...) in
(12.29),

IR 7017 < m?XI(I?"*’lfO,ll/j)nlbku

k=1

< mj@le(Rk O wal B+ X 1Y = 71
r=0

< mlel(lék*‘lfo, W)l (1B 11+ &Y ).

Using the third assumption in (A2) (and using w.l.o.g. that C = 1, as stated at the
beginning of the proof), we obtain

IY[2< (1+0%) + v, =% = 0p(1),

where v, = op(1) and hence ¥, = Op(1). Moreover, using k* < m, the bound above
becomes:

on B,(m)°:
IR" 1[5 Sm}’?lx|(1§k*71f0»llfj)n|(||ﬁr?||1+m7’n)+mAn

< K_l(l - K/Z)_len(”ﬁr?”l +my,) +mA,.

Hence, together with (12.39):
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A _ Dk _
IR O3 < max{2m™ =% k" (1= k/2) 24, (|IB I +m7) } +mA,.

We note that 0 < k¥ < 1/2 and hence Dy is a fixed number and recall A, =

Op(+/log(p,)/n) and ¥, = Op(1). Thus, for m, — o, m, = o(\/n/log(p,)) and
using that || 801 = o(y/n/10og(pn)), it follows that ||[R" f°||2 = op(1).

Regarding the convergence rate, we optimize m and choose

24Dy

m = /n/log(p,)* P (0 <k < 1/2).

Setting 0 = 1 — Dy resulting in 0 < § < 5/8, we hence choose

m= \/n/log(pn)% (0<6<5/8)

and we obtain the claimed convergence rate. O

12.8.3 Proof of Theorem 12.3

We use a similar notation as in the proof of Theorem 12.2. For vectors u,v € R",
denote by

n
(u,v)y=n"" Z uv;
i=1

the (scaled) Euclidean inner product in R”. Furthermore, we denote by f = (f (X)),
., f(X,))T the n x 1 vector for a function f(-) defined on the covariate space, and

by y; = (XI(J), .. ,X,E”)T (j=1,...,p) the vector of the jth covariable.

For k = 1,...,m, denote the remainder term (residuals) in iteration k by
5 Ak
RpO = 10— e

Ak e plkl . . . .
where foyp = XﬁOMP. Furthermore, we consider a noise-free version which uses

the same (estimated) selected variables with indices Ji, k = 1,2,.... Denote by N
the active set of variables after k steps, as described in Algorithm 11, let Pgy be the

projection from R” onto the linear span of § %I, and denote by
k
([)I]VIP = Ps[klfov
k0 _ (0 K
R ™ =f"— fomp (12.40)

the projection of the true underlying function (vector) f° and the corresponding
remainder term. We note that f([)kllwp = Pyy Y. Finally, we denote by
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00 =R =0.

Here and in the following, we suppress the index n in expressions like R /0, fOMP
and the true regression function f°.

Without loss of generality, we assume that the constant C in assumption (B2) satis-
fies:

IXBOl7 = /017 < 1.

This can be achieved by scaling for the case 1 < C < e and noting that due to C < oo,
the scaled version has still bounded error variances from below.

F1rst we show that the noise-free version fOMP, with the estimated selected variables
Jis-++s Ji is converging to zero as k — eo. To do so, we prove that [(R"! fO,y; ),

and max ;| (R-1 9, y;),,| are close.

The stochastic part of the analysis boils down to the upper bounds of

A, = jirlmxp|(8, Vj)n| = Op(+/log(pa)/n),

yeensy

see (12.26), and the following.
Lemma 12.4. For m = m, — oo (n — o0),

Lim) = max  max [(R 10, ),— (R0, 9l < Op(y/mafn).

k=1,...mp j=1,....p

Proof. Using the Cauchy-Schwarz inequality,

n}axp|(]ékilf0a'l’j)n_ (Rk71f07'//j>n‘ < |mk71fo_Rk71f0||n- (12.41)

The (square of the) right-hand side can be written as
IR 2 = R FO1 = 1P (Y = )17 = 1P 7
and clearly,
|Pge-nélly < |[Pgw—yelly for k' > k.
Thus,

E[kmax RO — RO 12) < E[|| Py ]3] < 02 (m—1)/n. (12.42)

Hence, together with (12.41), the claim follows. O
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Lemma 12.5. Let k € N. If

max [(R0,yg)n] > 2(1(m) + 4n) /x,
J=15eP

then

(RS, ] = (1= ) max | (R 7%, y)ul.

Proof. Consider first the bound

max (¥ = oup' Vo = (= Fow' - Wil < max(e, yj)a| = 4,

This, together with Lemma 12.4, implies:
Alk—1 _
max (Y = foe', i) — (RE1 20, )l < A+ L (m).

Thus,

(R0, 95 )l = (Y — figap s W3 )l — I (m) — A,

= max|(Y — e, )l = Ta(m) — A
> max (R 0, w)),| — 21, (m) — 24,
J
> (1—x)max | (R £, 7))l
J

where for the last inequality, we have used the assumption of the lemma. o

Our proof is now following ideas from Temlyakov (2000, Th. 3). We assume that
the condition of Lemma 12.5 holds for k = 1,...,m: that is, we consider the event

By(m) = mz"zl{jgg;§p|<1e’<—1f“,wj)n| > k26 (m) +4,)}. (12.43)

Then, for k =1,...,m and using Lemma 12.5:
onBy(m): R FOI5 <R F0 — R 10w v
I pk=1 40|12 k=120 0\ |2
= [|R fOHf R 7,95 )nl
< RN = (1= 1)  max |(R/ wpal®. (1244)

We now use the following inequality (Problem 12.8): for n x 1 vectors g =}, ¥; ¥,
and any A

|02 8)al < |71l max |2, yj)al- (12.45)
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Hence, using g = /0, h = RF1£9:
max | (R £yl = B IR0 S0 = 1B IR £
(12.46)
Thus, (12.44) becomes:
on By(m): [RFOI2 < IR 702 (1= (1= )2 BV 2 IR 0)2)
and hence also
1B IT2IRE P12 < BT IR £ (1= (1= <2 BYIT2UR £°112)
Furthermore,

BT NR A1 = 1B T2 1115 < 11BN

using w.l.o.g. the scaling || f°||2 < 1, see above. Thus, using Lemma 12.3, applied to
Cm = HB;?HfzuRme 2 we obtain:

on By(m) : B2 IR™ 7 < 1B N2 (14 (1= x)°m) ™,

and hence

onB,(m): [R"FOI2<(1+1—x)1’m) ' <(U—x)2m™ . (1247)

On the complementary event B, (m)¢, we argue as follows. Write
B, (m)¢ ={ there exists k* (1 <k* <m) such that
max (R0, yy)al < k12T (m) + 40}
Using the norm-reducing property,
IR"£°11% < IR £,
and using (12.46),
IR 501 < 1B max (B 1.yl < B0 2(L5(m) + )
we have:
on B,(m) : [|R" (013 < ||B, Il k™ "2(L (m) + An).
Together with (12.47), we obtain:

IR" £]17 < max{(1— ) 2m™ " (1Bl 2L (m) + A0} (1248)
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From (12.42) we obtain
Ey(m) = ||R" f* = R" f°|[3 = Op(m/n),
and hence, together with (12.48):
IR 07 < 4max{ (1 — 1) 2m™", | B |1 2(L(m) + Ap), Ea(m)}.

Recall that A, = Op(+/log(p,)/n), I;;(m) = Op(y/m/n) and Z,(m) = Op(m/n).
Choosing m = m,, — o m, = O(log(p,)) together with the assumption [|B?|;
o(v/n/log(p,)) leads to ||R™ f°| = op(1). Obviously, the choice m, — oo, m, =
o(n(max{1,[|B|I3})~") also leads to R" O = op(1).

Regarding the convergence rate, choosing

01—2/3_1/3
my = ||BO]1

and assuming that ||B0||; > B > 0 for all n, the term Z,(m) is asymptotically of
lower order and we obtain the claimed convergence rate. O

Problems

12.1. Gradient descent in function spaces
Prove formula (12.2).

12.2. Population minimizers of loss functions
For the “logit”- and exponential loss, derive formulae (12.5) and (12.8). See also
Friedman et al. (2000).

12.3. Prove formula (12.11) and show that in case of centered predictor variables,

the selected variable with index ; maximizes the absolute correlation of X () with
the residual vector.

12.4. Consider the L,Boosting hat matrix for linear base procedures. Derive formula
(12.15).

12.5. Twicing
Consider twicing with the Nadaraya-Watson kernel estimator. Derive formula (12.18)
which indicates a relation to higher-order kernel estimators.

12.6. Consistency of LyBoosting for high-dimensional linear models: for upper-
bounding the squared ¢>-norm, prove formula (12.31).
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12.7. Consider a linear model with orthonormal design n~ ' X" X =1I.

(a) Show that forward variable selection corresponds to hard-thresholding described
in Section 2.3 in Chapter 2.

(b) Show that orthogonal matching pursuit also corresponds to hard-thresholding.

12.8. Consistency of orthogonal matching pursuit for high-dimensional linear mod-
els: for upper-bounding the absolute value of the inner product, prove formula
(12.45).



Chapter 13
Graphical modeling

Abstract Graphical models are very useful to describe conditional independences
among a set of random variables. We focus on undirected graphs only and their
interpretation as conditional independence graphs. For undirected Gaussian graph-
ical models, ¢;-regularization methods can be used in a similar fashion as for lin-
ear models. Closely linked to the estimation of the underlying undirected graph is
the problem of covariance estimation which we briefly discuss as well. Besides ¢;-
penalization, we describe a completely different approach using the framework of
so-called faithful distributions which also has implications on variable selection for
regression. The chapter contains methodology, algorithms and mathematical theory.

13.1 Organization of the chapter

After an introduction with the basic definitions, we largely focus on undirected
Gaussian graphical models in Section 13.4. Estimation with ¢;-penalization is ei-
ther based on the joint Gaussian likelihood, as described in Section 13.4.1 where
the GLasso (Graphical Lasso) is defined, or we rely on the regression formulation
discussed in Section 13.4.2. Covariance estimation based on undirected graphs is
briefly outlined in Section 13.4.3 and the Ising model for binary variables is intro-
duced in Section 13.5. All these sections have methodological character only. The
different approach for undirected graphical modeling and variable selection in linear
models, based on so-called faithful distributions, is described in Sections 13.6 - 13.9.
For this part, we discuss methodology, computational algorithms and mathematical
theory.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 433
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 13,
© Springer-Verlag Berlin Heidelberg 2011
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13.2 Preliminaries about graphical models

A graph G consists of a set of vertices V and a set of edges E. The set of edges
E is a subset of V x V consisting of ordered pairs of distinct vertices. An edge is
undirected if (j,k) € E and (k, j) € E whereas an edge is directed from vertex j to
vertex k if (j,k) € E and (k, j) ¢ E. The neighbors or adjacency set of a node j in
the undirected graph G is denoted by adj(G, j) = {k € V; (j,k) € E and (k, j) € E}.

In a graphical model, the vertices of a graph, i.e., the set V, correspond to a collection
of random variables

Xy ~p (13.1)

where, throughout the whole chapter, we index the set V = {1,...,p} with |V| =
p, and P is the probability distribution of X. The pair (G, P) is referred to as a
graphical model. Among the variety of graphical models, we will describe only a
few concepts. In particular, we will only consider models with undirected graphs.
We refer to Lauritzen (1996) or Edwards (2000) for a detailed and broad description.

13.3 Undirected graphical models

In an undirected graph, all edges are undirected. Assuming a Markov property of
the distribution P with respect to the graph G, we can infer some (but maybe not all)
conditional independences among the random variables X (1), X (),

13.3.1 Markov properties for undirected graphs

Consider a graphical model (G, P).

Definition 13.1. We say that P satisfies the pairwise Markov property with respect
to the undirected graph G if for any pair of unconnected vertices (j, k) ¢ E (j # k),

X0 1 x® x4,

Here and in the sequel X'*) 1 XB)|X(©) denotes that XW) = {X\); j € A} is (mutu-
ally) conditionally independent of X\B) = {X)); j € B} given X(©) = {x); jeC}
where A,B,C C {1,...,p}.

A stronger notion is the global Markov property. For its definition, we introduce the
following. A path is a sequence of vertices {ji,...,j¢} such that (j;, ji+1) € E for



13.4 Gaussian graphical models 435

i=1,...,£—1. Consider a triple of disjoint sets A, B,C C V. We say that C separates
A and B if every path from j € A to k € B contains a vertex in C.

Definition 13.2. We say that P satisfies the global Markov property with respect to
the undirected graph G if for any triple of disjoint sets A, B,C such that C separates
A and B,

xW 1 x®)|x©),

In general, the global Markov property implies the local Markov property. The con-
verse holds for a large class of models, as described next.

Proposition 13.1. If the distribution P has a positive and continuous density with
respect to Lebesgue measure, the global and local Markov properties are equivalent.

The statement of Proposition 13.1 is proved in Lauritzen (1996, p.35). Within the
class of undirected graphical models, the following is the most popular.

Definition 13.3. A conditional independence graph (CIG) is a graphical model
(G, P), with undirected graph G, where the pairwise Markov property holds.

Thus, a CIG has the property: if (j,k) ¢ E (j # k), then X(/) L x®)|x(V\UUA  For
special cases, e.g. when P is multivariate Gaussian, the converse relation is true as
well, i.e., if XU) L X0 | x(V\UKD then (j,k) ¢ E.

13.4 Gaussian graphical models

We specify (13.1) to the assumption

X =xW, .. xPy~ 40,5) (13.2)
with positive definite p X p covariance matrix X. The mean zero assumption is
mainly for simplifying the notation.

A Gaussian graphical model (GGM) is a conditional independence graph with a
multivariate Gaussian distribution as in (13.2). The required pairwise Markov prop-
erty in the CIG, see Definition 13.3, is equivalent to the global Markov property due
to the Gaussian assumption, see Proposition 13.1.

The edges in a GGM are given by the inverse of the covariance matrix:
(j,k) and (k, j) € E <= XU L x¥xM\UM s 00220, (133)

This is a well-known result, see for example Lauritzen (1996). Thus, for a GGM,
we have an “if and only if” interpretation of an edge which is in general stronger
than in a CIG (see Definition 13.3).
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Furthermore, the inverse of the covariance matrix corresponds to partial correla-
tions. Denote by K = X! and its scaled version by C where

K«

VK Kk

Then, the partial correlation between X /) and X®) given X (V\U/:A}) equals

Cix=

Pikv\{jkr = —Cjk:

This is also a well-known result which can be found in Lauritzen (1996). In partic-
ular, we have the following relation for a GGM:

(k) and (k, j) € E <= £, # 0 <= ppjuy # 0-

Finally, partial correlations are directly related to regression coefficients. Consider
a regression

xD=gUx® 4y pUX0 4l (13.4)
reV\{j.k}

where ]E[sm} — 0 and due to the Gaussian assumption, £'/) is independent from
{x); re v\ {j}} (Problem 13.1). Then,

. k

Thus, we also have for a GGM:

. ; . j k
(j.k) and (k, j) € E <= ;L # 0 <= pjyja # 0 <= B # 0 and B )(é%)
Formula (13.5) links a GGM to the variable selection problem in regression. In
particular for the high-dimensional case, this is a fruitful connection: more details
are given in Section 13.4.2.

13.4.1 Penalized estimation for covariance matrix and edge set

Estimation with an /;-penalty can be used for inferring the structure of a GGM and
its underlying covariance matrix X. The negative Gaussian log-likelihood (scaled
with n~1) for data

X1, X, iid A (1, 5),



13.4 Gaussian graphical models 437

and when plugging in the maximum likelihood solution fI = n_IZleXi for u,
equals (Problem 13.2)

—n 0z Xy, X)) = —log(detZ ) 4 trace(EvigZ ) + D, (13.6)

where Sy g =n! Y (Xi— ) (X;— )T is the empirical covariance matrix, and D
is a constant with respect to Z~!. Note that we allow here for u # 0 (compare with
(13.2)). As for the Lasso (for general likelihood problems), we add an /;-penalty
and consider the estimator:

£71A) = argmin(—log(det =) + trace(SveZ ") + A1 Z7h),
r-ls0

1=~ = ;{IE;,SL (13.7)
J

where the minimization is over positive definite matrices. Since £~(1) is positive
definite, its inverse £(A) exists and is an estimate of the covariance matrix . The
minimization in (13.7) amounts to a convex optimization problem and fast algo-
rithms have been proposed (Friedman et al., 2007b; Banerjee et al., 2008). The pro-
cedure is sometimes referred to as the Graphical Lasso (GLasso) (Friedman et al.,
2007b) because of the use of the ¢;-penalty. Typically, it shrinks some of the non-
diagonal elements exactly to zero, i.e. ZAJ_kI (A) = 0 for some (j,k) (depending on

the size of A). Another version of the penalty function is 2 ¥ ;<4 |Z],3 |, where the
diagonal elements of X! are penalized as well (Friedman et al., 2007b). Note that
1/ E;} = Var(e/)), where £/) is the error in the regression in (13.4): hence, penal-
izing |X; ]1| encourages large values for the error variance Var(£(/)) which seems

unnatural and we prefer the definition where the diagonal entries of X! are not
penalized, as also proposed in Rothman et al. (2008).

Selection of the regularization parameter A can be done using cross-validation for
the negative Gaussian log-likelihood loss. When having a training and validation
set, the validated negative Gaussian log-likelihood loss can be derived from (13.6)
up to a constant:

—log(det 2t;alin (A)+ trace(ﬁvalid’MLEEAl;a]in (1)),

A

where XyuigMLE is the empirical covariance matrix from the validation sample.
A cross-validation scheme then repeats this operation and averages the resulting
scores.

The accuracy of £~! or £ can be measured by a prediction-type loss such as the
Kullback-Leibler divergence

pxr(E71 271 = trace(ZE 1) —log |ZE 7| — p,

or considering an estimation error in terms of e.g. the Frobenius-norm
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IE =z e =Y -5
Jok

or the operator matrix £,-norm | - ||, (1 < g < o).

For estimating the edge set in a Gaussian graphical model, we can proceed in the
spirit of variable selection with the Lasso in (generalized) linear models. Without
any significance testing, we can use the estimator

N

E(A)={(j,k) eV xV; £ }(A) #0}. (13.8)
This estimator is motivated by the population version
Ey={(j,k) €V xV; (£°);; #0},

see formula (13.3).

Such an estimator is computationally feasible in high dimensions and consistent for
inferring the true underlying edge set Ey if we require a rather restrictive form of an
irrepresentable condition (in terms of (X%)~! and ). Such a condition involves the
Fisher-information of the multivariate Gaussian distribution: we refer to Ravikumar
et al. (2008) for more details. However, it is argued in Meinshausen (2008) that
the nodewise regression pursuit discussed below in Section 13.4.2 is asymptotically
consistent for estimating the edge set Ep under less restrictive conditions on the
covariance X0 or its inverse; also Ravikumar et al. (2008) discuss this issue in
detail.

Practically relevant is the following analogy to the variable selection property of
the Lasso in regression: when choosing the regularization parameter A via cross-
validation for the likelihood loss, we typically obtain the screening property (assum-
ing implicitly that a certain compatibility or restricted eigenvalue condition holds
and that the non-zero elements of (X°)~! are sufficiently large):

E(Acv) 2 Eo,

saying that the estimated graph contains the true underlying edge set Ey. Further-
more, we can use a two stage adaptive GLasso estimator:

ﬁ_l(l) = argmin(—log(detZ_l) +trace(fMLEE_l) +A Z wjk|2j_kl D,
I1-0 i<k ’

Wik = 1/‘2i;ii;j,k|v
where ﬁi;ilt is the GLasso estimator from the first initial stage. Fan et al. (2009a)
relate this procedure to a one-step approximation for a non-convex penalty function,
similar to our discussion of formula (2.30) in Section 2.8.5, and see also Section
6.11 and Section 7.13. We do not provide any mathematical results regarding the
estimator in (13.7), and we refer the reader to Rothman et al. (2008) and Ravikumar
et al. (2008). Their mathematical techniques are rather different than our theoretical
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framework from Chapters 6 and 7 which - in principle - could be used as well
to establish consistent estimation and optimality via oracle inequalities. Roughly
speaking, if p > n, a suitable sparsity condition and an irrepresentable assumption
(in terms of (£9)~! and X°) are required.

We summarize that the GLasso estimator in (13.7) exploits and enjoys positive def-
initeness for £~! and £ and hence, the estimate is often very good in terms of the
predictive Kullback-Leibler divergence or e.g. the Frobenius or operator norm. For
estimation of the edge set in a Gaussian graphical model, however, asymptotic con-
sistency of the GLasso requires sufficiently large non-zero entries of (ZO)*1 and
strong coherence or irrepresentable conditions which are more restrictive than what
is needed for the nodewise regression pursuit described below in Section 13.4.2.

13.4.1.1 Stability selection with the GLasso

We present empirical results when using the GLasso estimator from (13.7) for a
sub-problem of the dataset about riboflavin production with bacillus subtilis, see
Section 9.2.6: here, we consider p = 160 gene expression variables and n = 115
samples. The response variable, measuring the riboflavin production rate, is not of
interest. We show (Figure 13.1) the estimated zero-pattern of X~ which we dis-
play in terms of a Gaussian conditional independence graph with estimated edge
set as in (13.8). In addition, we also present the solution when using stability selec-
tion with pointwise control as described in Section 10.3.1 in Chapter 10, i.e., we do
stability selection for single regularization parameters A of the GLasso estimator.
Thereby, we run stability selection by controlling the number of expected false pos-
itives E[V] < 30, that is we expect fewer than 30 wrong (false positive) among the
12’720 possible edges in the graph.

Figure 13.1 illustrates the results for different tuning parameters A. The most strik-
ing feature is that with stability selection, the estimated edge set changes very little
as we vary the regularization parameter A of the original GLasso procedure.

Next, we permute the variables (gene expression values) randomly, using a different
permutation for each variable (gene). Thus, all variables are independent of each
other and the underlying conditional independence graph is the empty graph. Then,
the exchangeability condition from Theorem 10.1 for stability selection holds. The
results are displayed in Figure 13.2. Even though the original GLasso procedure
selects way too many edges (since the regularization parameters is of too small
order of magnitude), most of them turn out to be unstable and stability selection
yields essentially the true underlying empty graph.
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G raphical Lasso

Stabilit ___§,§_Igction

Fig. 13.1 Riboflavin production dataset with p = 160 and n = 115. Part of the regularization path
of the GLasso (top row) and the corresponding point-wise stability selected models (bottom row).
The figure is taken from Meinshausen and Biithlmann (2010).

Graphical Lasso

Stabilit_.____S._g_Iection

Fig. 13.2 Permuted variables in riboflavin production dataset with p = 160 and n = 115. Part of
the regularization path of the GLasso (top row) and the corresponding point-wise stability selected
models (bottom row). The figure is taken from Meinshausen and Biihlmann (2010).

13.4.2 Nodewise regression

Formula (13.5) leads to inferring the edges in a Gaussian graphical model by pur-
suing many regressions, as originally proposed by Meinshausen and Biihlmann
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(2006):

=Y BVXO el j=1,.p, (13.9)
r#J

where Bo(j) denotes the true parameter vector. This is called nodewise regression.
We assume that we have a variable selection procedure for each of the p regressions
above. That is, we have estimates

SO for S = {rs BP0, r=1,....p, r#j}, j=1,...,p.
For example, the Lasso yields

= {r; BV (1) £ 0}, (13.10)

where Bm(l) are the estimated regression coefﬁcients from the Lasso with tun-
ing parameter A (when regressing X /) versus {X N r J - See Section 2.6 and
Chapter 7 for more details. An alternative variable selection procedure is given by
the adaptive or thresholded Lasso, analogously as above but using [5 ) from the
adaptive or thresholded two-stage procedures. For details about these methods, see
Sections 2.8-2.9 and Chapter 7.

Based on $U), we build an estimate of the graph structure as follows. We can use
the “or”-rule and define:

estimate an edge between nodes j and k <=k € SU) or VS S,
A more conservative approach is based on the “and”-rule:
estimate an edge between nodes j and k <=k € SU) and JE S,

We note that for the population analogue as in (13.5), the “and”- and “or”’-rule co-
incide.

From the viewpoint of asymptotic consistency for the edges in a GGM, it is sufficient
that

PISU) 5] =0 (n — o), (13.11)

o8

j=1

for the “and”- or or rule. This follows directly from (13.5) and the Bonferroni
bound for P[SU #S forsome j=1,...,p].

Assuming for every regression in (13.9) the irrepresentable condition (for random
designs) and a beta-min condition on the size of the minimal absolute value of the
non-zero regression coefficients, the Lasso fulfills (13.11). This follows from Sec-
tion 2.6 and with more rigorous statements given in Chapter 7. Meinshausen and
Biihlmann (2006) who proposed this approach formulate the conditions in terms of
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the true underlying covariance matrix X° and (X°)~'. Similarly, (13.11) also holds
for the adaptive or thresholded Lasso under more relaxed conditions on the designs
in the many regressions, see also Chapter 7.

Nodewise regression seems, at first sight, less powerful for inferring the edge set Ey
than a simultaneous approach considering all nodes in the graph at once as with the
GLasso approach in Section 13.4.1. However, the sufficient and essentially neces-
sary conditions for consistent estimation of Eq (in terms of (£°)~! or £°) are weaker
for nodewise regression than for GLasso. More discussion on this issue is given in
Meinshausen (2008) and Ravikumar et al. (2008).

13.4.3 Covariance estimation based on undirected graph

A powerful way to estimate a high-dimensional covariance matrix and its inverse
can be based on the structure of a graph. Consider an undirected conditional inde-
pendence graph (CIG) G. We can then infer the covariance matrix X via maximum
likelihood estimation with a constraint that the zero-elements of £~! correspond to
the non-edges in the CIG G. We abbreviate this constraint by C(X~! <+ G):

£;'= argmin (—log(det271) —&—trace(EAMLEZ*l)) , (13.12)
E1-00(Z714:G)

and by matrix inversion we also obtain a covariance estimate £¢. If the CIG G is
unknown, we can base the estimator in (13.12) on an estimate G to obtain ECT;I

and f@. The computation of the estimator in (13.12) is as for the GLasso in (13.7),
involving convex optimization over positive definite matrices but without penalty
term in (13.12).

The estimate G could be from the GLasso in (13.7). Then, the estimator in (13.12)
is a GLasso-MLE hybrid estimator, analogous to the Lasso-OLS estimator briefly
described in Chapter 2, Section 2.10.

Alternatively, we can use the nodewise regression approach from the previous Sec-
tion 13.4.2 for an estimate G. This has the advantage that the estimator G is consis-
tent for a broader range of scenarios than the GLasso, as briefly discussed in Section
13.4.2. In particular, using the estimator in (13.12) in conjunction with the power-
ful nodewise regression approach addresses the drawback that nodewise regression
alone does not yield an estimate of the covariance X or its inverse £~ !. Zhou et al.
(2010) present some mathematical analysis of such a two-stage procedure. There,
the nodewise regression estimates /) = $()(1) in (13.10) are thresholded Lasso
estimators:

B =B > M), (13.13)
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where Agres > 0 is a threshold parameter, analogous to Section 2.9 and Section 7.6.

When using the GLasso or the nodewise regression approach for G and then em-
ploying the estimator in (13.12) in a second stage, we typically get (much) improved
performance for estimation of X and X! if the true underlying inverse covariance
matrix is sparse with a few non-zero entries having large absolute values, in compar-
ison to a single-stage GLasso estimate. This finding is in line with what we discussed
for linear models in Sections 2.8, 2.9 and 2.10, and we also refer to Sections 6.10
and 7.7.

13.4.3.1 Gene expressions from isoprenoid biosynthesis pathway in
arabidopsis thaliana

We illustrate the methods on gene expression data from the isoprenoid biosynthesis
pathway in arabidopsis thaliana given in Wille et al. (2004). In plants, isoprenoids
play important roles in a variety of processes such as photosynthesis, respiration,
regulation of growth and development. The data set consists of p = 39 isoprenoid
genes for which we have n = 118 gene expression measurements under various ex-
perimental conditions. As performance measure we use the 10-fold cross-validated
negative Gaussian log-likelihood for centered data. Figure 13.3 presents some re-
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Fig. 13.3 Covariance estimation for arabidopsis gene expression data with n = 118 and p = 39.
x-axis: log(no. non-zero elements of ZA*I); y-axis: 10-fold cross-validated negative Gaussian.
GLasso (black line) and MLE in (13.12) based on nodewise regression estimated graph using
the thresholded Lasso for various threshold parameters denoted by 7 (colored lines). Left: using
the “and”-rule for nodewise regression graph estimate; Right: using the “or”-rule for nodewise
regression graph estimate (see Section 13.4.2).
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sults for the GLasso and the covariance estimator in (13.12) based on an estimated
undirected graph from nodewise Lasso regression with thresholding as indicated in
(13.13). Regarding the latter, different threshold parameters are displayed with dif-
ferent curves, and varying the regularization parameter in GLasso or in the nodewise
Lasso regressions yield the curves in the graphs. We see that the GLasso exhibits an
approximately 5% improved performance in terms of the cross-validated negative
log-likelihood. However, when requiring more sparse solutions, estimation based
on an undirected graph from nodewise regression is better. This finding fits into
the typical picture that for highly sparse inverse covariance matrices, the two-stage
procedure using MLE based on an estimated graph performs better.

13.5 Ising model for binary random variables

We consider here the situation where all the variables X (1), X S {0,1} are
binary. An interesting model for such binary variables is the Ising model with the
joint distribution

P(x(l),...,x(p)):%exp Y a0 (13.14)
(Y) Jjk=1,...p

where all y,ﬁj ) e Rand Z(y) is a normalization factor ensuring that the probabilities

sum up to one. The conditional independence graph is given from Definition 13.3.
For the Ising model (13.14), the following is true (Problem 13.3):

X L x® xR = o) 20 and ¥ £ 0. (13.15)

This is analogous to formula (13.5), due to the structure of the Ising model in
(13.14). However, this structure does not necessarily hold for more general dis-
tributions of binary variables: that is, there could be higher-order interaction terms
whereas this is not possible in the multivariate Gaussian case.

Formula (13.15) can be re-written in terms of logistic regression. Consider

logit(PXV) = 1|x VD)) = ¥ gYXH (j=1,...,p),
=y

where logit(p) = log(p/(1 — p)) for 0 < p < 1. It then holds that
B,Ej) :2y,£j) and hence y]gj) 7é0<:>ﬁkm #0. (13.16)

We leave the derivation of (13.16) as Problem 13.4. Therefore, because of (13.15),
we can infer the conditional independence graph for binary random variables from
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an Ising model in (13.14) via nodewise logistic regression, analogous to the method
described in Section 13.4.2.

We can use any reasonable variable selection procedure for each of the p logistic
regressions above with estimates

S forS0 ={r; ﬁ, %0,r:1,...,p,r7éj}, j=1,...,p,

where we denote by ﬁo(j ) the true underlying logistic regression parameters.

For example, the Lasso for logistic regression with tuning parameter A, as described
in Chapter 3, yields

={r B (%) £0).

Based on $U), we can estimate the conditional independence graph with edge set
Ey analogously as with nodewise regression in the Gaussian case (Section 13.4.2).
When using the “or’-rule, we define E,:

{(j,k), (k. )} € By =k e SV or j e §H.
A more conservative approach is based on the “and”-rule with the estimator Eond:
{(j,k), (ky )} € Eapg <=k €SV and j € S¥.

We note that both rules coincide for the population analogue in (13.15). The method
is consistent for finding the true underlying edge set, assuming sparsity, restrictive
conditions in terms of the corresponding Fisher-information matrix (i.e. analogous
to the irrepresentable condition for Gaussian graphical models) and a beta-min con-
dition saying that the non-zero coefficients 715] ) in the Ising model are sufficiently
large. For detailed mathematical arguments, we refer the interested reader to Raviku-

mar et al. (2009b).

13.6 Faithfulness assumption

Consider a graphical model (G, P) where P satisfies a Markov condition (pairwise or
global) relative to G. Thanks to the Markov condition, we can infer from the graph
G some conditional independences for the distribution P. In general, the distribution
P may include other conditional independence relations than those entailed by the
Markov condition.

Definition 13.4. We say that the probability distribution P is faithful to the graph G
if the following equivalences hold: for every triple of disjoint sets A,B,C CV,
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C separates A and B < X 1 x () \X(C).

Faithfulness says that we can read of all conditional independences from the graph-
ical concept of separation. The implication “==-" follows from assuming the global
Markov property, and faithfulness requires that the other implication “<=" holds as
well.

As a direct implication of the faithfulness assumption we obtain (Problem 13.5):

XU 1 x® | x) — x| x0x(©) forall ¢, D € with j,k & Cy. (13.17)

13.6.1 Failure of faithfulness

We give two examples of non-faithful distributions.

13.6.1.1 Cancellation of regression coefficients

Consider an undirected conditional independence graph G with vertices V = {1,2,3}
and E = {(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)}. That is, all vertices are connected
by an edge. Assume the global Markov property. Via this property, we can read off

Fig. 13.4 Conditional independence graph G where all p = 3 vertices are fully connected.

some (conditional) independence relations from the graph: for this case, however,
no (conditional) independences can be inferred (since none of the pairs of nodes
can be separated by another node). Nevertheless, it may happen that two variables
are marginally independent, i.e., an independence relation which cannot be read off
from the graph. A concrete construction for this phenomenon is as follows:

x( — ¢

)
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XC) = gx() 4 ¢,
X(3) — ﬁX(l) + f}/X(z) + 8(3),

where e(1), e £3) iid. ~.4(0,1), £® independent of {X® Xx(V} and ® in-
dependent of X(1). Then,

(X(l)vX(Z)ﬂx<3)) ~ </1/3(072)7
1 o B+oay
= o a’+1 aB+y(a?+1)
B+ay af+y(a?+1) B2+y*(a®>+1)+1+2aBy

We can enforce marginal independence of X(!) and X 3) by choosing a, 3,7 such
that B + ay = 0, that is, cancellation of regression coefficients takes place. For ex-
ample, take o« = = 1, y= —1. Then,

1 10 3-2-1
=1 2-1].,2'=[-=2 2 1
0-1 2 -1 1 1

Thus, since Cov(X M, x (3>) = 0 and because of joint Gaussianity, we conclude that
xM 1 xG), Moreover, as described in Section 13.4, zero partial correlations cor-
respond to zeroes in £~ !: since there are no zeroes in X!, all partial correlations
are non-zero and hence, X (i) X () |X () for all combinations of distinct indices
i # j#ke{1,2,3}. This, of course, is compatible with the graph in Figure 13.4.

Thus, this is an example with a distribution which is not faithful: for example X M
X©3) does not imply xM 1 x0G) |X<2>, compare with (13.17). It happens because
the regression coefficients cancel in a very specific way. In a certain sense, this is
“unlikely”: Section 13.9.1 describes more details about this. But clearly, requiring
faithfulness is restricting the class of probability distributions.

13.6.1.2 Moving-average model

Consider a moving average model of order g for stationary time series:
q
Xt = Z 9j8,_j+£,7 = 1,2,...,
j=1
€1,&,... iid with E[g] =0, E[g?] = 6° < .

Then, the autocorrelation function satisfies
Cor(X;,X;+x) =0 fork > q.

On the other hand, if 6 # 0, the partial autocorrelation function satisfies
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Parcor(X;, Xy 14| Xi+1, .-, Xp1k—1) # O forall k > 1,

cf. Brockwell and Davis (1991) (for k = 1, the partial correlation is defined as the
marginal correlation). For example, for g = 1:

(=61 (1-67)
AN VAR S WA )
1_912(k+1)

Parcor(X;, Xy 1 X 41, Xipk1) = —

Thus, these models have the property that a correlation can be zero while the partial
correlation is non-zero. In the Gaussian case where & ~ .4'(0,62) and partial corre-
lations describe conditional dependences, this property is in conflict with the faith-
fulness assumption, see formula (13.17). Hence, Gaussian moving-average models
correspond to non-faithful distributions (with respect to conditional independence
graphs).

13.6.2 Faithfulness and Gaussian graphical models

In the sequel, we denote partial correlations by
Pjkic = Parcor(X(/)’X(k) |X(C))7
where X(©) = {X(); r € C} for some subset C C V' \ {j,k}.

Proposition 13.2. Consider a GGM where P is faithful with respect to the graph G.
We then have:

pjk|C] = 0:>pjk|C2 = Of()rall C2 :_) C1 with j,k ¢ Cz.

Proposition 13.2 immediately follows from (13.17). A weaker notion of so-called
partial faithfulness is discussed in Section 13.9.1: there, we require the assertion of
Proposition 13.2 only for the set C; = V' \ {j,k}. In case of faithfulness, we have a
stronger result than in formula (13.5).

Proposition 13.3. Consider a GGM where P is faithful with respect to the graph G.
We then have:

(j,k) and (k, ) € E <= pjyc # O for all subsets C CV \ {j,k}.

We leave the proof as Problem 13.6. We see from Proposition 13.3 that the faith-
fulness assumption yields a graph with fewer edges than without requiring faithful-
ness. In case of the latter, we have no edge between vertices j and k if and only

if pjxv\(jk) = 0, whereas with faithfulness, we only need that pjc = 0 for some
C CV\{j,.k}.
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Proposition 13.3 has algorithmic implications. We can hierarchically screen marginal
correlations pj; and then low-order partial correlations pjxc with |C| small: if one
of them is zero, we know that there is no edge between j and k. Of course, it is
much easier to estimate marginal or low-order partial correlations than a higher-
order partial correlation. We will see in Section 13.7 how the PC-algorithm exploits
this property in a hierarchical way, assuming sparsity which restricts the size of the
adjacency set adj(G, j) = {k € V;(j,k) and (k, j) € E} for every vertex j € V in the
graph G.

13.7 The PC-algorithm: an iterative estimation method

The PC-algorithm (Spirtes et al., 2000), where “PC” stands for the first names of
the inventors Peter Spirtes and Clarke Glymour, is a clever iterative multiple testing
procedure for inferring zero partial correlations. Roughly speaking, we exploit the
fact from Proposition 13.2 in the following way. If a marginal correlation pj; = 0,
there is no need to consider partial correlations p ¢ of higher order with |C| > 1.
Analogously, if a first order partial correlation p |, = 0, we do not need to consider
higher order partial correlations pjc with m € C and |C| > 2; and so on. Thus,
faithfulness allows to test partial correlations in a hierarchical way, from marginal
to first- and then to higher-order partial correlations.

13.7.1 Population version of the PC-algorithm

In the population version of the PC-algorithm (PCpp), we assume that perfect
knowledge about all necessary conditional independence relations is available. What
we refer here to as the PC-algorithm is what others call the first part of the PC-
algorithm; the second part infers directions for some edges in a directed acyclic
graph (DAG). Most often, the PC-algorithm is used in connection with estimating a
DAG (or its equivalence class), but we do not cover this topic in the book.

The maximal value of ¢ of the order of the partial correlations in Algorithm 12 is
denoted by

Myreach = Maximal value of ¢ reached, (13.18)

which depends on the underlying distribution.

We explain now the principles of the PCpop algorithm in words. Thereby, we focus
on Gaussian distributions where we can characterize conditional independences by
corresponding partial correlations being equal to zero. The algorithm then starts with
a full graph where all nodes are connected with edges to each other. In Step 6, we
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Algorithm 12 The PC-algorithm

1: INPUT: Vertex set V, conditional independence information

2: OUTPUT: Conditional independence graph G

3: Form the complete undirected graph G on the vertex set V

4: Setl=—1;5etG=GCG

5: repeat

6:  Increase £ < (+1

7: repeat

8: Select a (new) ordered pair of nodes (j, k) that are adjacent in G such that

1adj(G, /) \ {k}| > ¢

9: repeat
10: Choose (new) C C adj(G, j) \ {k} with |C] = ¢.
11: if j and k are conditionally independent given C then
12: Delete edge j — k
13: Denote this new graph by G
14: end if
15: until edge j — k is deleted or all C C adj(G, j) \ {k} with |C| = ¢ have been chosen

16:  until all ordered pairs of adjacent nodes (j,k) such that |adj(G, j)\ {k}| > ¢ and C C
adj(G, j) \ {k} with |C| = £ have been tested for conditional independence
17: until for each ordered pair of adjacent nodes (j,k): |adj(G, j) \ {k}| < £.

start with £ = 0, and we first consider marginal correlations (Step 10 with |C| = 0)
among all pairs of variables (Step 8 and noting that the current G is the full graph):
we then delete the edges whose corresponding marginal correlations are zero (Steps
11 and 12). After this first round considering marginal correlations only, we obtain
a smaller graph (Step 13). We then increase the index ¢ to £ = 1 which means that
we will look at partial correlations of order £ = 1. We select a pair of variables with
nodes j and k which are connected by an edge and we consider the partial correlation
of order £ = 1 by conditioning on some variable whose node C is connected to at
least one of the nodes j or k: if the partial correlation is zero, we delete the edge
between j and k, and if it is non-zero, we try other conditioning nodes C which are
connected to at least one of the nodes j or k. If none of the conditioning nodes C
yields zero partial correlation, we keep the edge between j and k; and vice-versa,
we delete the edge if there is a conditioning node C which leads to zero partial
correlation. We then do this partial correlation screening of order one for all other
pairs of connected nodes: in every of these screens, the current graph may become
less dense with fewer edges. Then, we increase the index ¢ to ¢ = 2 and consider
partial correlations of order £ =2 and so on. Since ¢ < myeach, Wwe will only consider
partial correlations of order less or equal to mye,ep: if the true underlying graph is
sparse, Myeach 18 small (see Proposition 13.4) and hence, estimation of such lower-
order partial correlations is not too much ill-posed. Another important algorithmic
feature is that the conditioning variables with nodes C (Step 10) are only from the
neighborhoods of the current graph and hence, assuming a sparse underlying true
graph, it is feasible to screen among all such conditioning nodes C. In fact the,
algorithm is computationally feasible for p in the thousands but assuming that the
true graph is reasonably sparse. We will discuss in Section 13.7.2 how to modify the
PC,p algorithm when estimating partial correlations from data.



13.7 The PC-algorithm: an iterative estimation method 451

A proof that Algorithm 12 produces the correct CIG can be deduced from the proof
of Proposition 13.6 in Section 13.9.2 which treats the simpler problem of variable
selection in a linear model. From this, it follows that the PC,p algorithm could be
slightly simplified: in Step 8, instead of going through all pairs of ordered random
variables, we could consider an asymmetric version with pairs of ordered random
variables {(X/),X®)); j < k} which - as a disadvantage - depends on the ordering
when it involves estimation (but not for the population version). We summarize the
property of the PC,,p as follows.

Proposition 13.4. Consider a Gaussian graphical model with conditional indepen-
dence graph (CIG) G and distribution P, and assume that P is faithful to G. Denote
the maximal number of neighbors by q = max <<, |adj(G, j)|. Then, the PCpop-
algorithm constructs the true underlying graph G. Moreover, for the reached level:

Myeach € {61— 17Q}-

We note that the PC,,op-Algorithm 12 also works for non-Gaussian, faithful distribu-
tions. However, inferring conditional independences in non-Gaussian distributions
from finitely many data is generally much more difficult than what we discuss next.

13.7.2 Sample version for the PC-algorithm

For finite samples, we need to estimate conditional independences. We limit our-
selves to the Gaussian case, where all nodes correspond to random variables with a
multivariate normal distribution as in (13.2). Then, conditional independences can
be inferred from partial correlations equaling zero: p ¢ = Parcor(X (1), x| x(©)) =
0 if and only if X(/) 1. XK |X(©), see (13.5) (thereby using V = CU {j,k}).

We can thus estimate partial correlations to obtain estimates of conditional inde-
pendences. The sample partial correlation pjyc can be calculated via regression,
inversion of parts of the empirical covariance matrix or recursively by using the
following identity: for any 4 € C,

Pjkic\n — Pjnjc\nPrriC\h
\/(1 B fj]zh‘C\h)(l o ﬁkzh\c\h)

Pjkic = (13.19)

Using this recursion, we start with the sample covariance estimate Svip=n"! Y
(X; — X)(X; —X)T, calculate from it the sample correlation matrix and recursively
compute sample partial correlations according to formula (13.19).

For testing whether a partial correlation is zero or not, we apply Fisher’s z-transform

. 1 H‘ﬁjkC)
Z(jk|C) = ~To < . (13.20)
(Jk|C) 5 log T Pric
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Under the null-hypothesis that p ;c = 0 and assuming a multivariate Gaussian dis-
tribution, the distribution of Fisher’s z-transform \/n— |C| —3Z(jk|C) = .47(0,1)
is asymptotically standard Normal, see for example Anderson (1984, Sec. 4.3.3).
Hence, we use the following decision- or thresholding-rule: reject the null-hypothesis
Hy(jk|C) : pjkic = 0 against the two-sided alternative Hy (jk|C) : pjic # O if

Vn=|Cl=3|Z(jkIC)| > @7 (1~ a/2),
where &(-) denotes the cdf of .47(0,1).

The sample version of the PC-algorithm is almost identical to the population version
in Section 13.7.1.

Algorithm 13 The PC-algorithm

1: INPUT: Vertex set V, sample covariance estimate 2MLE

2: OUTPUT: Estimated conditional independence graph G

3: Run the PC,op-Algorithm 12 from Section 13.7.1 but replace in line 11 of Algorithm 12 the
if-statement by

if \/n—|C|—3|Z(jk|C)| < @~ 1(1 — o /2) then

The PC-Algorithm 13 yields a data-dependent value #iyeach,, Which is the sample
version of (13.18). The only tuning parameter of the PC-algorithm is &, which is a
significance level for testing individual partial correlations.

As we will see in Section 13.8, the PC-algorithm is asymptotically consistent even
if p is much larger than n but assuming that the underlying graph is sparse and that
the non-zero partial correlations are sufficiently large.

13.7.2.1 Computational complexity

The computational complexity of the PC-algorithm is difficult to evaluate exactly,
but the worst case is bounded by

O(p?*"reach’) bounded with high probability by O(p*™9) (p — ),  (13.21)

where g = max< j<, |adj(G, j)| is the maximal size of the neighborhoods. We note
that the bound may be very loose for many distributions. In fact, we can do the com-
putations for fairly dense graphs, for example some nodes j having neighborhoods
of size |adj(G, j)| equal to 10 or 20.

We provide a small example of the processor time for estimating the graph using
the PC-algorithm. The runtime analysis was done on a dual core processor 2.6 GHz
and 4 GB RAM and using the R-package pcalg. The number of variables varied
between p = 10 and p = 1000 while the number of samples was fixed at n = 1000.
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The sparseness is measured in terms of average size of the adjacency sets adj(G, j),
over all nodes j (and also over different random graph structures): the corresponding
theoretical quantity (expectation) is denoted by E[N] and we consider E[N] = 2 and
E[N] = 8. For each parameter setting, 10 replicates were used. In each case, the
tuning parameter used in the PC-algorithm was o¢ = 0.01. The average processor
time together with its standard deviation for estimating the graph is given in Table
13.1. Graphs of p = 1000 nodes and 8 neighbors on average could be estimated in
about 25 minutes, while graphs with up to p = 100 nodes could be estimated in
about a second.

p |EIN]| cPU

10 | 2 ]0.028 (0.003)
10 | 8 [0.072 (0.004)
30 | 2 | 0.10(0.01)
30 | 8 | 0.56(0.03)
50 | 2 | 0.19(0.01)
50 | 8 | 1.29(0.04)
100 2 | 0.54 (0.03)
100| 8 | 4.68(0.16)
300] 2 | 4.0(0.05)
300 8 | 42(1.43)
1000] 2 | 50(0.22)
1000| 8 | 565 (26.1)

Table 13.1 Average processor time in seconds (CPU) for estimating simulated undirected graphs
(GGMs) using the PC-algorithm with o = 0.01, with standard errors in brackets. Various values of
p and expected neighborhood size E[N], sample size n = 1000.

13.8 Consistency for high-dimensional data

This section is based on results from Kalisch and Biihlmann (2007). We assume
that the data are realizations of i.i.d. random vectors X1, ..., X, with X; € R? having
a probability distribution P. To capture high-dimensional behavior, we will let the
dimension grow as a function of sample size: thus, p = p,, and also the distribution
P = P and the graph G = G are depending on n. That is, we consider a triangular
scheme of observations (see also (2.6)):

Xotso o Xppidd ~PM n=1273,...
Our assumptions are as follows.

(A1) The distribution P is multivariate Gaussian and faithful to an undirected
graph G for alln € N.
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(A2) The dimension p, = O(n*) for some 0 < a < oo.

(A3) The maximal number of neighbors in the undirected graph G, denoted by
gn = max, < j<p, |adj(G, j)|, satisfies g, = O(n'~?) for some 0 < b < 1.

(A4) The partial correlations satisfy:

inf{|pjxicls Pjxc # O,
Bk=1,...,pn (j#k),CC{L,....pa} \{J:k}, |[C| < qn} > cpy

where ¢,/ = O(n?) (n — o) for some 0 < d < b/2and 0 < b < 1 as in (A3);

SUP{|ij|c|;
n
Jk=1,...p0 (j#Kk),CC{L,...,pua} \{J,k},|C| < gqn} <M < 1.

Condition (A1) is an often used assumption in graphical modeling, although the
faithfulness assumption does restrict the class of probability distributions. Assump-
tion (A2) allows for an arbitrary polynomial growth of dimension as a function of
sample size. It could be relaxed to p, = O(exp(n®)) for some sufficiently small
0 < 8 < 1. (A3) is a sparseness assumption. (A4) ensures detectability of non-zero
partial correlations: it could be reformulated to ¢, = /g, /n!~* for k > 0 arbitrarily
small which is slightly more restrictive (if p, is polynomial in n) than the detectabil-
ity bound /gy log(p,)/n, see for example the beta-min condition for regression in
(2.23) and in Section 7.4. Furthermore, (A4) restricts the linear dependence by re-
quiring an upper bound M < 1 for partial correlations. We note that (A4) involves
condition sets C with |C| < ¢, and hence, it is a kind of “sparse partial correlation”
condition related to the discussion on sparse eigenvalues in Section 6.13.5 from
Chapter 6. The following result then holds for the PC-algorithm.

Theorem 13.1. Consider a Gaussian graphical model with distribution P and
underlying conditional independence graph G™. Assume (Al)-(A4). Denote by
G (o) the estimate from the PC-Algorithm 13 in Section 13.7.2. Then, there ex-
ists &, — 0 (n — o), see below, such that

P[G,(a,) = G
= 1—0(exp(—Kn'24)) = 1 (n — o),
for some 0 < K < oo depending on M in (A4), and d > 0 is as in (A4).

A proof is given in the Section 13.8.2. A choice for the value of the tuning parameter
is o, = 2(1 — @(n'/?c, /2)) which depends on the unknown lower bound of partial
correlations in (A4).
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13.8.1 An illustration

We show the behavior of various error rates in a high-dimensional setting where
the number of variables increases almost exponentially, the number of samples in-
creases linearly and the expected neighborhood size increases sub-linearly. The the-
oretically expected neighborhood size of the adjacency sets adj(G, j) over all nodes
Jj (and also over different random graph structures) is denoted by E[N]. By inspect-
ing the theory, we would expect the false positive error rate (FPR) and true positive
error rate (TPR),

number of (estimated) false positives |ENE|

FPR = — = )
number of (true) non-positives |E|

(13.22)

TPR — number of (estimated) tru§ Positives _ |ENEy| 7 (13.23)
number of (true) positives |Eo|

to stay constant or even decrease. Table 13.2 shows the results of a small numeri-
cal study addressing this question; for details about the data-generating model see
Kalisch and Biihlmann (2007). We used the PC-Algorithm 13 with @ = 0.05, and
the results are based on 20 simulation runs. Indeed, because the expected neighbor-

p | n|EN]| TPR | FPR

9 50| 1.4]0.61(0.03) [ 0.023(0.005)
27 [100{ 2.0 | 0.70 (0.02) | 0.011(0.001)
81 |150| 2.4 |0.753 (0.007)| 0.0065 (0.0003)
243 |200] 2.8 |0.774 (0.004)| 0.0040 (0.0001)
729 [250] 3.2 [0.794 (0.004)(0.0022 (0.00004)
2187|300 3.5 |0.805 (0.002)[0.0012 (0.00002)

Table 13.2 The number of variables p increases almost exponentially, the sample size n increases
linearly and the expected neighborhood size E[N] increases sub-linearly. The results are based on
using & = 0.05, 20 simulation runs, and standard deviations are given in brackets.

hood size E[N] = 0.2y/n increases sub-linearly in n, despite that p increases almost
exponentially in 7, both the FPR and TPR error rates improve as n gets larger, as
supported by the consistency result in Theorem 13.1, see also assumption (A3). The
ratio log(p)/n equals for the various scenarios: 0.044,0.033,0.029,0.027,0.026 and
0.026, respectively.
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13.8.2 Theoretical analysis of the PC-algorithm

The statistical properties of iterative algorithms can be studied by first considering
the population version and then showing that the accumulation of estimation errors
is under control. We use this strategy here to prove Theorem 13.1.

13.8.2.1 Analysis of partial correlations

We first establish uniform consistency of estimated partial correlations. Denote by
Pu:jk and p,.jx the sample and population correlations between X () and X%, re-
spectively. Note that also the population parameters p,. jx depend on n due to the tri-
angular array asymptotic framework as described at the beginning of Section 13.8.
Likewise, P, jkjc and p, jc denote the sample and population partial correlation
between X /) and X®) given X(©) = {X(");r € C}, where C C {1,...,p,} \ {j,k}.In
fact, it turns out that we only need to consider conditioning sets from

K = {CC {1 b\ ok} [C] <}
whose cardinality is bounded by
[K7y'| < Bpy" for some 0 < B < co. (13.24)

Here, m, — o (n — o) is growing sufficiently slowly (we will use later that m,, =
O(n'~?) as the rate of g, in Assumption (A3)).

Lemma 13.1. Assume (Al) (without requiring faithfulness) and sup, ;s |Pu;ji| <
M < 1 (compare with (A4)). Then, for any 0 < v < 2,

A 4-7
sup PP — Pul > 11 < C1(n—2)exp (<n4> log( >) ,
kel T 4+

for some constant 0 < Cy < oo depending on M in (A4) only.

We note that Problem 14.4 describes a related result.
Proof. The statement of Lemma 13.1 is no surprise, due to the Gaussian assumption.

We make substantial use of Hotelling (1953)’s work. Denote by f,(r,p) the proba-
bility density function of the sample correlation p = p,,, 1, jx based on n+ 1 obser-
vations and by p = p, 1.« the population correlation. (It is notationally easier to
work with sample size n+ 1; and we use the abbreviated notations with p and p).
ForO<y<2,

Plp—p|>7=Pp<p—7+Pp>p+7l
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It can be shown, that f,,(r,p) = f,(—r,—p), see Hotelling (1953, p.201). This sym-
metry implies,

Py[p <p—y=Ps[p>p+7 with p = —p. (13.25)

Thus, it suffices to show that P[p > p +7y] = P, [p > p + 7] decays exponentially in
n, uniformly for all p.

It has been shown (Hotelling, 1953, p.201, formula (29)), that for —1 < p < 1,
(n—1)I(n)

ATt 1) o(p+7)(1+i) (13.26)

Pp>p+7y <
p>p+7< =]

with

1 n n—
Mo(p+7)= [ (1=pHE(1-27)'T (1— pr) "+ b
p+y

= (1-p)F (-1 —px)3dx (usingii=n—3)
p+y
(—pﬁg/*( LpVI=2,,
X
(1—1|p|)3? Jo+r 1—px
3
< (1*”2)252 max (—M vl*xz)ﬁ. (13.27)
(1=lph3 persxst T—ps

A/ 1—0p2+/1—x2
We will show now that g, (x) = ]1’17’”])6 <lforallp+y<x<land —1<
p < 1 (in fact, p < 1 — y due to the first restriction). Consider

V1-p2/1=(p+7)?

wp g = s
—l<p<lipty<x<1 P —l<p<l—y 1—p(p+7)
1/ ,sz],f
r 4—7
I 4+ 5 <lforall0 <y<2.

(13.28)

Therefore, for —1 < —M < p < M < 1 (see assumption (A4)) and using (13.26)-
(13.28) together with the fact that F(”>I < const. with respect to n, we have

L(nt53)
Pp>p+7]
(n=D)I(n) (1-p»)3 4-9; 2
= V2rL(n+ %) (1_|p|)%2(4+72) U+ 5p)
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_R2 —
< Cl(n—l)(irg:z)"=C1(n—1)eXP <(”_3)log(j+;§)>’

where 0 < C; < o depends on M only, but not on p or y. By invoking (13.25), the
proof is complete (note that the number n in the proof corresponds to the actual
sample size n — 1). O

Lemma 13.1 can be easily extended to partial correlations, as shown by Fisher
(1924), using projections for Gaussian distributions.

Proposition 13.5. (Fisher, 1924)

Assume (Al) (without requiring faithfulness). If the cumulative distribution function
(cdf) of Pn;jk is denoted by F(-|n,py.; ), then the cdf of the sample partial correla-
tion Py jijc with |C| =m <n—1is F[-[n—m, py,. jxc]- That is, the effective sample
size is reduced by m.

A proof can be found in Fisher (1924); see also Anderson (1984). O
Lemma 13.1 and Proposition 13.5 yield then the following.

Corollary 13.1. Assume (Al) (without requiring faithfulness) and the upper bound
in the second requirement of (A4). Then, for m, <n—4, any 0 <y <2,

sup P(|p,. jkic — Pn:jric] > V]
j,ke{1....,pn},CeKj";"

4y
< Ci(n—2—my)exp ((n—4—m")1°g(4+y2)> ’

for some constant 0 < Cy < oo depending on M in (A4) only.

The PC-algorithm is testing partial correlations after the z-transform g(p) = 0.5log((1+
p)/<1 - p)) Denote by Zn;jle = g(fjn;jk\C) and by Zn; jk|Cc = g(pn;jk\C)‘

Lemma 13.2. Assume the conditions from Corollary 13.1. Define L=1/(1—(1+
M)?/4), with M as in assumption (A4). Then, for m, — o (n — ), m, < n—4, and
forany 0 <y <2L,

sup P(|Z,.jxic — znsjic| > Yl
JKE{L,....pn} CEKT!
4—(y/L)?
< O(n—my) (exp { (n—4—my,) IOg(éHE%L;z)} +exp{—Ca(n— m,,)})

for some constant 0 < Cy < oo depending on M in (A4) only.

Proof. A Taylor expansion of the z-transform g(p) = 0.5log((1+p)/(1 —p))
yields:



13.8 Consistency for high-dimensional data 459
]/~ A
Zujic = Znjklc = 8 (Pujiic) (Pusjkic — Pusjkic)s (13.29)

where |By jkic — Pu:jxc| < |Pnjkic — Pusjric|- Moreover, g'(p) = 1/(1 — p?). By ap-
plying Corollary 13.1 with y = ky = (1 — M) /2 we have

j,k,gg{;'}(” P[Py jkic = Pusjiic| < K]

>1-Ci(n—2—my)exp(—Cr(n—my,)), (13.30)
where C,C; depend on M. Since
1 1

! ~
& (Pn;j = ~ = =
( ]k‘C) 1- p,%;j]dc 1- (pn;jk|C + (Pn;jk|c - pn;jk\C))2

< T ) if [y jkic — Prsjric] < Kns

where we also invoke (the second part of) assumption (A4) for the last inequal-
ity. Therefore, since ky = (1 —M)/2 yielding 1/(1 — (M + xy)?) = L, and using
(13.30), we get

inf  Plg' (Ppjkic)| < L]
JkCERT

> 1-Ci(n—2—my)exp(—Ca(n—my)). (13.31)

Since |g'(p)| > 1 for all p, we obtain with (13.29):

sup  P[|Z,.jxic — zn:jic] > V) (13.32)
j,k,CeKZ’("
< sup  Plg'(Pujiic)l > LI+ sup P[Py jkic — Pusjnic] > ¥/LI-
Jk CERTY jkCEKI

Formula (13.32) follows from elementary probability calculations: for two random
variables U,V with |U| > 1 (JU| corresponding to |¢’(p)] and |V| to the difference

6 —pD,

P(lUV|>7y) =P(UV[>1|UI> L) +P(JUV] >y, 1 <|U[<L)
<SP(U[>L)+P(V[>7y/L).

The statement then follows from (13.32), (13.31) and Corollary 13.1. O
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13.8.2.2 Proof of Theorem 13.1

For the analysis of the PC-algorithm, it is useful to consider a more general version,
the so-called PC,,0p(m), as described in Algorithm 14 below. By definition, the PC-

Algorithm 14 The PC,,,,(m)-algorithm

1: INPUT: Stopping level m, vertex set V, conditional independence information

2: OUTPUT: Conditional independence graph G

3: Form the complete undirected graph G on the vertex set V

4: Setl=—1;set G=G

5: repeat

6:  Increase { < (+ 1

7: repeat

8: Select a (new) ordered pair of nodes (j,k) that are adjacent in G such that |adj(G, j) \

{k}| > ¢

9: repeat
10: Choose (new) C C adj(G, j) \ {k} with |C| = ¢.
11: if j and k are conditionally independent given C then
12: Delete edge j — k
13: Denote this new graph by G.
14: end if
15: until edge j — k is deleted or all C C adj(G, j) \ {k} with |C| = ¢ have been chosen

16:  until all ordered pairs of adjacent variables (j,k) such that |adj(G, j) \ {k}| > ¢ and C C
adj(G, j) \ {k} with |C| = £ have been tested for conditional independence
17: until £ = m or for each ordered pair of adjacent nodes (j,k): |adj(G, j) \ {k}| < €.

algorithm in Section 13.7.1 equals the PCpop (1¢qcn)-algorithm. There is the obvious
sample version, the PC(m)-algorithm, and the PC-algorithm in Section 13.7.2 is the
same as the PC(#eqch)-algorithm, where 7ieqch 1S the sample version of (13.18).

The population version PC,,p(112,)-algorithm when stopped at level my, = myeach
constructs the true skeleton according to Proposition 13.4. Moreover, the PCpyop(1m)-
algorithm remains to be correct when using m > Myeach ». The following Lemma
extends this result to the sample PC(m)-algorithm.

Lemma 13.3. Assume (Al), (A2), (A3) where 0 < b < 1 and (A4) where 0 <d < b/2.
Denote by Gn(an,mn) the estimate from the PC(m,,)-algorithm and by G the true
underlying conditional independence graph. Moreover, denote by Myeach . the value
described in (13.18). Then, for m, > Myeachpn, Mn = O(n'=%) (n — o), there exists
0y — 0 (n — o) such that

P[G, (04, my) = G
= 1-0(exp(—Kn' %)) = 1 (n — o),

where d > 0 is as in (A4) and 0 < K < o depending on M in (A4).
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Proof. An error occurs in the sample PC-algorithm if there is a pair of nodes j, k and
a conditioning set C € K;"k” (although the algorithm is typically only going through a
random subset of K}’}(") where an error event E j ¢ occurs; E j;|c denotes that “an er-
ror occurred when testing partial correlation for zero at nodes j,k with conditioning
set C”, and the two kind of errors (false positives and false negatives) are described
precisely in (13.34) below. Thus,

P[an error occurs in the PC(m,,)-algorithm]

<Pl U Euc<0p?) sup PlEjc]; (13.33)
JAkCER 7k CERG!
using that the cardinality of the set |[{j,k,C € K}"}| = O(p mit2) see also formula
(13.24). Now
1 1
where

type Lerror Efy e : Vn—Ik[=3|Zyc| > @' (1 —a/2) and zc =0,
type I error Ejj - - Vn—1k[=3|Zjycl < @' (1 - @/2) and zjyc # 0.

Choose o = o, = 2(1 — ®(n'/?¢, /2)), where ¢, is from (A4). Then,

sup PIEf, ] = sup P[|Zyc—zcl > (n/(n—|C|—3))"?c, /2]
ik, CEKm” s k,CEK;';("
< O(n—m,,)exp(—@(n—mn)cﬁ), (13.35)

for some 0 < C3 < oo (depending on M in (A4)) using Lemma 13.2 and the fact that
log(4+62) ~ —82/2 as § — 0. Furthermore, with the choice of & = ¢, above,

sup PEjcl= sup PZycl < v/n/(n—|Cl-3)cu/2]

Jik, CGKm" J.k,CeK m”
< sup  PZjyc —zjxcl >Cn(1—\/”/("—|C|—3)/2)L
JkCEK!

because infi,k,CeKﬂ" |Zjkic| > cn since [g(p)| > [p] for all p and using assumption
(A4). By invoking Lemma 13.2 we then obtain:

sup P[E k\c]<0(” my,) exp(—Cy(n—m,)c2) (13.36)
jkCGKm"

for some 0 < C4 < oo (depending on M in (A4)). Now, by (13.33)-(13.36) we get

P[an error occurs in the PC(m,,)-algorithm]
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O(pp 2 (n—my) exp(—Cs(n—my)cy))
O(n“" 2+ exp(—Cs(n—my)n~24))

—0 (exp (a(mn +2)log(n) +log(n) — Cs(n' =2 — m,,n—Zd))) —o(1),

IN A

because n' ¢ dominates all other terms in the argument of the exp-function due to
the assumption in (A4) that d < b/2. This completes the proof. a

Lemma 13.3 leaves some flexibility for choosing m,,. The PC-algorithm yields a
data-dependent reached stopping level Aigeach 5, that is, the sample version of (13.18).

Lemma 13.4. Assume (Al)-(A4). Then,
P|itreachn = Mreachn] = 1 — O(exp(—Kn'727)) — 1 (n — o),

where d > 0 is as in (A4) and 0 < K < oo depending on M in (A4).

Proof. Consider the population algorithm PC,,(m): the reached stopping level sat-
isfies myeach € {¢n — 1,¢n }, see Proposition 13.4. The sample PC(m,,)-algorithm with
stopping level in the range of myeqch < m, = O(n'~?) (we can choose such an m,
since Myeaeh € {gn — 1,9} and g, = O(n' ")) coincides with the population version
on a set A having probability P[A] = 1 — O(exp(—Kn'~2?)), see the last formula in
the proof of Lemma 13.3. Hence, on the set A, fiireach n = Mreach € {qn — 1,¢n }. The
claim then follows from Lemma 13.3. O

Lemma 13.3 and 13.4 together complete the proof of Theorem 13.1.

13.9 Back to linear models

We have seen in (13.5) a direct relation between Gaussian graphical models and
regression coefficients. We will argue here that a weaker form of the faithfulness
condition from Section 13.6 turns out to be very useful for variable selection in
a linear model. The presentation in this section is largely based on results from
Biihlmann et al. (2010).

LetX = (XD,... . x(P)) € 2 be a vector of covariates with E[X] = 0 and Cov(X) =
Ty and let € € R with E[¢] = 0 and Var(¢) = 62 > 0 such that ¢ is independent of
xM .. xP)_ Consider a response ¥ € R defined by the following random design
linear model:

P .
Y=p+Y BIXU) te, (13.37)
j=1
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for some parameters it € R and true parameter vector 8 = (B7,..., [3]9 YT e RP (we

do not emphasize the “truth” of the other parameters with the notation “0”’). We
assume:

(B1) Xy is strictly positive definite.

Note that assumption (B1) implies identifiability of the regression parameters from
the joint distribution of (X,Y) since

[50 = Z};l(Cov(Y,X(l)) . ,Cov(Y,X(m))T,

implicitly assuming that second moments of X (/s exist. More discussion about
assuming a positive definite population covariance for the covariates X is also given
in Section 6.12. Furthermore, we assume that E[Y?] < .

We consider sparse linear models where some (or most) of the ﬁj(-)’s are equal to
zero. The goal is variable selection, that is to identify the active set

So={j: B} #0, j=1,....p}

based on a sample of independent observations (X1,Y;),...,(X,,Y,) which are dis-
tributed as (X,Y). We denote the number of nonzero Bj(-)’s by so = |So|-

13.9.1 Partial faithfulness

We now introduce the concept of partial faithfulness which is weaker than requiring
a faithful distribution for the random variables ¥, X1, ... X (P) in the linear model
in (13.37). Partial faithfulness will allow us to identify the active set Sy of covariates
using a simplified version of the PC-Algorithm 13.

Definition 13.5. (Partial faithfulness) Ler X € R? be a random vector (e.g. covari-
ates), and let Y € R be a random variable (e.g. response). The distribution of (X,Y)
is said to be (X,Y)-partially faithful if for every j € {1,...,p}:

Parcor(Y,X(j)|X(C)) =0 forsomeC C{l,...,p}\Jj

We remark that partial faithfulness has no direct relation to a graphical model and
its definition does not require a graphical concept. It can be shown that partial faith-
fulness is generally a weaker condition than requiring faithfulness of a distribution
in a directed acyclic graph model which relates to a linear model as in (13.37), see
Biihlmann et al. (2010). Furthermore, we note that for the linear model (13.37) with
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a model satisfies the partial faithfulness assumption if for every j € {1,...,p}:

Parcor(Y,XV|X(©)) = 0 for some CC {1,...,p}\j = B]O =0. (13.38)

A direct consequence of partial faithfulness is as follows (Problem 13.7).

Corollary 13.2. Consider the linear model (13.37) satisfying the (X,Y)-partial
faithfulness condition. Then the following holds for every j € {1,...,p}:

Parcor(Y, X |X () £0 forall C C{1,...,p}\ j <= B? #0.

Corollary 13.2 shows that a variable from the active set Sy has a strong interpretation
in the sense that all corresponding partial correlations are different from zero when
conditioning on any subset C C {1,...,p}\ j.

13.9.1.1 Sufficient condition for partial faithfulness

We consider the linear model in (13.37) and we assume that (B1) holds. Moreover,
we make a condition on the structure of [3]0 (j=1,...,p): to do so, we will use the
framework where the non-zero coefficients are fixed realizations from a probability
distribution. A sufficient condition for partial faithfulness is (see Theorem 13.2):

(B2) The true regression coefficients satisfy:

{B): j €So} ~ f(b)db,

where f(-) denotes a density on (a subset of) R% of an absolutely continuous
distribution with respect to Lebesgue measure.

Assumption (B2) says that the non-zero regression coefficients are (fixed) realiza-
tions from an absolutely continuous distribution with respect to Lebesgue measure.
Once the B]Q’s are realized, we fix them such that they can be considered as deter-
ministic in the linear model (13.37). This framework is loosely related to a Bayesian
formulation treating the [319’5 as independent and identically distributed random vari-
ables from a prior distribution which is a mixture of point mass at zero (for [3;)’5
with j ¢ Sp) and a density with respect to Lebesgue measure (for ﬁjo’s with j € Sp).
Assumption (B2) is rather mild in the following sense: the regression coefficients
having values zero can arise in an arbitrary way and only the non-zero coefficients
are restricted to exclude adversarial cases.

Theorem 13.2. Consider the linear model (13.37) satisfying assumptions (B1) and
(B2). Then (X,Y )-partial faithfulness holds almost surely (with respect to the distri-
bution generating the non-zero regression coefficients, see (B2)).
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A proof is given in Section 13.9.6. Theorem 13.2 says that failure of (X,Y)-partial
faithfulness has probability zero (i.e., Lebesgue measure zero).

13.9.2 The PC-simple algorithm

We present here a slightly simplified version of the PC-Algorithm 13 in Section 13.7
for estimating the active set Sp = {j; [3]0 # 0} in a linear model. We closely follow
Section 13.7.

13.9.2.1 Population version of the PC-simple algorithm

We explore how partial faithfulness can be used for variable selection. In order to
show the key ideas of the algorithm, we first assume that the population partial
correlations are known. Afterwards, we consider the more realistic situation where
they need to be estimated from data.

Recall that partial faithfulness for the linear model in (13.37) says:
Parcor(Y,X/)|X(©)) = 0 for some C C {1,....p}\ {j} = [310 =0.
The easiest relation is with C = 0:
Cor(Y, X)) =0 = BY =0, (13.39)

showing that the active set Sp cannot contain any j for which CQr(Y,X 1y =o.
Hence, we can screen all marginal correlations between pairs (Y, X (/)), j=1,....p,
and build a first set of candidate active variables

S = {j: Cor(y,xD) 0, j=1,...,p}.

We call this the step; active set or the correlation screening active set, and we know
by (13.39) that

So € st (13.40)

Such correlation screening may reduce the dimensionality of the problem by a sub-
stantial or even huge amount.

Furthermore, we can screen partial correlations of order one by using the following
relation: for j € Sm,

Parcor(Y, XX ®)) = 0 for some k € S\ {j} = ﬁJO =0. (1341)
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That is, for checking whether the jth covariate remains in the model, we can ad-
ditionally screen all partial correlations of order one. Note that we only consider
partial correlations given variables in the step; active set S0, This is similar to what
is done in the PC algorithm, and it yields an important computational reduction
while still allowing to eventually identify the true active set Sy (see Algorithm 15
and Theorem 13.6). Thus, screening partial correlations of order one using (13.41)
leads to a smaller set

sl = {j e sl; Parcor(y, XV |x®)) £ 0 for all k € S\ {j1} c sl

This new step, active set S12 has further reduced the dimensionality of the candidate
active set, and because of (13.41) we still have that Ne 2 8.

We can continue screening of higher-order partial correlations, resulting in a nested
sequence of step,, active sets

stios s oso . os,. (13.42)

A step,, active set .S ] can be used as dimensionality reduction and any favored vari-
able selection method could then be used for the reduced linear model with covari-
ates corresponding to indices in sl Alternatively, we can continue the algorithm
until the candidate active set does not change anymore. This leads to the PC-simple
algorithm described in Algorithm 15.

Algorithm 15 The population version of the PC-simple algorithm.

1: Setm = 1. Do correlation screening, see (13.39), and build the step; active set
S = {j; Cor(v,x) #£0, j=1,...,p}.
2: repeat
3: Increase m < m—+ 1.
Construct the step,, active set:

sl = {j e =1 Parcor(v, XV [x(©) £ 0
for all € €SP\ {j} with [C] =m—1}.

4: until |SI"| < m.

In analogy to (13.18), we denote the value m that is reached in Algorithm 15 by
Mreach:

Myeach = min{m; |S[’”]| <m}. (13.43)

The PC-simple algorithm is similar to the PC-Algorithm 13 in Section 13.7. But the
PC-algorithm considers all ordered pairs of variables in (X(V),....X() Y), while
we only consider pairs (Y,X())), j € {1,..., p}. The reason for not considering pairs
(X W), x (k)) is that we are only interested in associations between Y and X (/): we can
then restrict ourselves to consider conditioning sets in the neighborhood of Y only



13.9 Back to linear models 467
(instead of both neighborhoods of Y and X (/) as in the PC-algorithm; see also the
comment appearing before Proposition 13.4).

The following result describes correctness of the PC-simple algorithm.
Proposition 13.6. For the linear model (13.37) satisfying (Bl) and (X,Y)-partial

faithfulness, the population version of the PC-simple algorithm identifies the true
underlying active set, i.e., S"each] = §5 = { j: [3]0 #£0, j=1,...,p}

A proof is given in Section 13.9.6.

13.9.2.2 Sample version of the PC-simple algorithm

For finite samples, we need to estimate partial correlations. We use the following
shorthand notation:

p(¥.j|C) = Parcor(y, XV|X(©)) p(¥, j|C) = Parcor(¥, X)X (©)),
p(j.kIC) = Parcor(X®, x[X(©), p(j,k|C) = Parcor(x D, XV |x(©)),

where the “hat-versions” denote sample partial correlations. These sample partial
correlations can be calculated recursively, as in (13.19): for any k € C we have

5(1.510) — PIIC\ D) P KIC\ (k)P KC\ )
T V=R KO R - PO (kD)

Asin (13.20), we test whether a partial correlation is zero using Fisher’s z-transform,

1+ﬁ(Y,j|C)).

Furthermore, exactly as in Section 13.7.2, we use the following decision rule: re-
ject the null-hypothesis Hy(Y, j|C) : p(Y,j|C) = 0 against the two-sided alternative
HAY,jIC) : p(Y.jIC) # 0'if

Vn—|Cl=31Z(x,j|C)| > @71 (1 - a/2),

where @(-) denotes the standard normal cumulative distribution function and « is
a (single testing) significance level. The Gaussian distribution serves as a reference:
even in absence of a Gaussian distribution, the rule above can be seen as a thresh-
olding operation.

Z(Y,j|C) = %log ( (13.44)

The sample version of the PC-simple algorithm (Algorithm 16) is obtained by re-
placing the statements about Parcor(Y, X /)|X(€)) £ 0 (including C = 0) in Step 3 in
Algorithm 15 by

Vn—|C|=3|Z(Y,jIC)| > @' (1 — a/2).
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Algorithm 16 The PC-simple algorithm

1: Run the population version of the PC-simple Algorithm 15 from Section 13.9.2.1 but replace
in line 3 of Algorithm 15 the statement about partial correlations being non-zero by

Vn=1Cl=3|Z(Y jlO)| > 7' (1 - a/2)

The resulting estimated set of variables is denoted by S(a) = Slreach! (o), where
Tireach 1 the estimated version of the quantity in (13.43). The only tuning parameter
a of the PC-simple algorithm is the (single testing) significance level for testing
partial correlations. Asymptotic properties of the PC-simple Algorithm 16 are dis-
cussed in Section 13.9.4.

We note that the PC-simple algorithm is very different from a greedy forward (or
backward) scheme: it screens many correlations or partial correlations at once and
may delete many variables at once. Furthermore, it is a more sophisticated pursuit
of variable screening than the marginal correlation approach in Fan and Lv (2008),
described in Section 13.9.5 or its extension to low-order partial correlation screening
(Wille and Biihlmann, 2006).

Since the PC-simple algorithm is a simplified version of the PC algorithm, its com-
putational complexity is bounded above by the worst-case polynomial runtime of
the PC algorithm, see (13.21) for a crude bound. In fact, we can easily use the PC-
simple algorithm for sparse problems where p ~ 100 — 5’000, as demonstrated in
Section 13.9.3.

13.9.3 Numerical results

13.9.3.1 Real data: riboflavin production by bacillus subtilis

We consider the high-dimensional real data set about riboflavin (vitamin B2) pro-
duction by the Bacillus subtilis which we introduced in Section 9.2.6. There is a
continuous response variable ¥ which measures the logarithm of the production
rate of riboflavin, and there are p = 4088 covariates corresponding to the logarithms
of expression levels of genes. We consider a genetically homogeneous sample of
n = 71 individuals. One of the main goals is variable selection, in order to find
genes which are most relevant for the production rate. We pursue this step using a
linear model.

We use the PC-simple Algorithm 16 and we compare it with the variable selectors
based on the Lasso, as described in Sections 2.5 and 2.6 and formula (2.10), and
based on the Elastic Net discussed in Section 2.13 in Chapter 2. For the latter, we
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vary the ¢;-penalty parameter only while keeping the ¢»-penalty parameter fixed at
the default value from the R-package elasticnet. We run the PC-simple algo-
rithm on the full data set, with various values of the tuning parameter «. Then, we
compute the Lasso and Elastic Net and choose the regularization parameters such
that the same number of selected variables arise as for the PC-simple method.

Table 13.3 indicates that the variable selection results of the Lasso and Elastic Net
are more similar than the ones from the PC-simple method. Although the PC-simple
algorithm seems to select variables in a “slightly different” way than the penalized
Lasso and Elastic Net methods, we find a remarkable overlap of the few selected

o for PC—simple|selected var. |PCﬁLasso|PCﬂEN et|LassoﬂENet

0.001 3 0 0 2
0.01 4 2 1 3
0.05 5 2 1 3
0.15 6 3 2 3

Table 13.3 Variable selection for riboflavin production dataset. The columns show the number of
selected variables (selected var.), the number of variables that were selected by both PC-simple
and Lasso (PCNLasso), the number of variables that were selected by both PC-simple and Elastic
Net (PCNENet), and the number of variables that were selected by both Lasso and Elastic Net
(LassoNENet).

genes among p = 4088 candidates.

13.9.3.2 Simulated data

We simulate data according to a Gaussian linear model as in (13.37) having p co-
variates with covariance matrix Xy, = p‘j’k|. In order to generate values for 3°,
we follow (B2): a certain number sq of coefficients [3? have a value different from
zero. The values of the nonzero BJ(-)’s are sampled independently from a standard

normal distribution and the indices of the nonzero ﬁ;”s are evenly spaced between
1 and p. We consider a low- and a high-dimensional setting:

Low-dimensional:  p =19, s9=3,n=100; p € {0,0.3,0.6} with 1000 replicates;
High-dimensional: p =499, so = 10, n = 100; p € {0,0.3,0.6} with 300 replicates.

We evaluate the performance of the methods using ROC curves which measure some
performance aspect of variable selection independently from the issue of choosing
good tuning parameters. We compare the PC-simple algorithm with the Lasso and
with the Elastic Net, and the latter two are used as described in the previous Subsec-
tion 13.9.3.1. In our PC-simple algorithm, the proposed default value for the tuning
parameter is o = 0.05: its performance is indicated by the intersection of the vertical
lines and the ROC curves in Figure 13.5.
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Fig. 13.5 ROC curves for the simulation study in Section 13.9.3.2. PC-simple algorithm (solid
line), Lasso (dashed line) and Elastic Net (dotted line). The solid vertical lines indicate the perfor-
mance of the PC-simple algorithm using the default oc = 0.05. The figure is taken from Biihlmann
et al. (2010).

We first discuss the results for the low-dimensional settings (Figures 13.5(a), 13.5(c),
13.5(e)). For small false positive rates (FPRs, see equation (13.22) for the defini-
tion), the PC-simple algorithm is clearly better than Lasso or Elastic Net. If the
correlation among the covariates increases, the performance of Elastic Net deterio-
rates, whereas the performances of PC-simple and Lasso do not vary much. When
focusing on the FPR arising from the default value for & in the PC-simple method,
PC-simple outperforms Lasso and Elastic Net by a large margin.
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For the high-dimensional settings (Figures 13.5(b), 13.5(d), 13.5(f)), we see that for
small FPRs, the difference between the methods is small. Lasso performs best, while
Elastic Net is worst and PC-simple is somewhere in between. For larger FPRs, this
effect becomes stronger.

13.9.4 Asymptotic results in high dimensions

13.9.4.1 Consistency of the PC-simple algorithm

We show that the PC-simple Algorithm 16 from Section 13.9.2.2 is asymptotically
consistent for variable selection in high-dimensional situations with p > n, assum-
ing certain assumptions.

We consider the linear model in (13.37). In order to simplify the asymptotic calcu-
lations, we assume a joint Gaussian distribution (see (C1) below). To capture high-
dimensional behavior, we let the dimension grow as a function of sample size. That
is, we consider a triangular array of observations (e.g. see (2.6)) where p = p,,, the
regression coefficients [5]9 = ﬁ,?; y and hence the active set So = Sp , with 5o = 59, =
1S0,:| and also the distribution of (X,Y) (e.g. partial correlations p(-,-|-) = p,(-,+|-))
change with n. In the following, we denote by {j}¢ = {1,...,p}\ j. We make the
following assumptions.

(C1) The distribution in model (13.37)
(X,Y) ~ P = N1 (Ux i1, ZX ¥in)

is Gaussian and P satisfies assumption (B1) and the partial faithfulness condi-
tion for all n.
(C2) The dimension p, = O(n®) for some 0 < a < oo.

(C3) The cardinality of the active set 5o, = |So..| = |{J; ﬁ;?;j #0,j=1,...,pn}|
satisfies: 59, = O(n' ) for some 0 < b < 1.

(C4) The partial correlations p, (Y, j|C) satisfy:
inf {94(Y. JIC): PalY.JIC) #0. j=1,...pas C S {7}, €] <500} = €,
where ¢,/ = O(n?) for some 0 < d < b/2, and b is as in (C3).
(C5) The partial correlations p, (Y, j|C) and p,(j,k|C) satisfy:

(i) sup lPa (Y, jIC) <M <1,
nj.C{YICI <50,
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(if) sup 1Pu(J KIC)| <M < 1.
n, j7#k,CC{j,k}¢,|C| <50.n

The Gaussian assumption in (C1) is not crucial: Theorem 13.6 shows that the pop-
ulation case does not require a Gaussian assumption and (C1) is only made to sim-
plify asymptotic calculations. A more detailed discussion of assumptions (C1)-(C5)
is given below.

Denote by S, () the estimated set of variables from the PC-simple Algorithm 16 in
Section 13.9.2.2 with tuning parameter .

Theorem 13.3. Consider the linear model (13.37) and assume (CI)-(C5). Then
there exists a sequence o, — 0 (n — o) such that the PC-simple algorithm sat-
isfies:

P[S, () = So.a] = 1 — O(exp(—Kn'2)) = 1 (n — o),
for some 0 < K < oo depending on M in (CS5), and d > 0 is as in (C4).

A proof is given in Section 13.9.6. A choice for the value of the tuning parameter
leading to consistency is o, = 2(1 — @ (n'/?c,/2)). Note that this choice depends on
the unknown lower bound of the partial correlations in (C4). This value ¢, although
introduced as a significance level of a single test, is a tuning parameter which allows
to control type I and II errors over the many tests which are pursued in the PC-simple
algorithm.

13.9.4.2 Discussion of the conditions of Theorem 13.3

We have discussed in previous chapters the Lasso and versions of it for high-
dimensional and computationally tractable variable selection in linear models. None
of them exploit partial faithfulness and thus, it is interesting to discuss the conditions
from this section with a view towards other established results.

For the Lasso, the neighborhood stability or irrepresentable condition is sufficient
and essentially necessary for consistent variable selection (assuming in addition a
beta-min condition on the regression coefficients), as described in Sections 2.6, 2.6.1
and also in Section 7.5.1. We recall that the neighborhood stability or the irrepre-
sentable condition can quite easily fail to hold (e.g. in Example 13.1 below) which,
due to the necessity of the condition, implies inconsistency of the Lasso for variable
selection. The adaptive Lasso, described in Section 2.8, or other two-stage Lasso
and thresholding procedures yield consistent variable selection under compatibility
or restricted eigenvalue conditions which are weaker than the neighborhood stabil-
ity or irrepresentable condition, see also Sections 7.8-7.9 and Example 13.1 below.
These conditions are not directly comparable with our assumptions (C1)-(C5).
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Somewhat unfortunately, assumptions (C1)-(C5) cannot be separated in terms of
design and signal strength. Nevertheless, we make an attempt for an interpretation.
We assume a random design where assumptions (B1) and (C5,(ii)) hold. Requiring
(B1) is rather weak since we do not require explicitly any behavior of the covariance
matrix Xy = Xy., in the sequence of distributions P (n € N), except for strict pos-
itive definiteness for all n (but not an explicit bound on the minimal eigenvalue). On
the other hand, (C5,(ii)) excludes perfect collinearity where the fixed upper bound
on partial correlations is placing some additional restrictions on the design. Further-
more, the linear model of Y|X involves regression coefficients which are required
to satisfy certain conditions as follows. The partial faithfulness condition follows
from Theorem 13.2 if we assume (B2) from Section 13.9.1 for every n. Dependence
relations among covariates enter implicitly in restricting the regression coefficients
via assumptions (C4) and (C5,(i)). Assumption (C4) imposes a constraint regard-
ing the detectability of small non-zero partial correlations. The condition is slightly
more restrictive than requiring the order of the detection limit /s, log(p,)/n for
the Lasso given in e.g. (2.23) (see also the discussion of (A1)-(A4) in Section 13.8).
Assumption (C2) allows for an arbitrary polynomial growth of dimension as a func-
tion of sample size, i.e., high-dimensionality, while (C3) is a sparseness assumption
in terms of the number of effective variables. Both (C2) and (C3) are standard as-
sumptions in high-dimensional asymptotics. If the dimension p is fixed (with fixed
distribution P in the linear model), (C2), (C3) and (C4) hold automatically, and
(C1) and (C5) remain as the only conditions. For the high-dimensional case, a sim-
ple modification of Example 13.1 is presented below where conditions (C1)-(C5)
hold.

It is easy to construct examples where the Lasso fails to be consistent while the
PC-simple algorithm recovers the true set of variables, as shown by the following
example.

Example 13.1. Consider a Gaussian linear model as in (13.37) with

p=45=30"=1,u=(0,...,07, EXY]=0forall j,
L pi p1p2
pi 1 pip2
Xx = =—-04 =0.2
X Pl Pl 1 p2 y P1 y P2 5
p2p2p2 1
B1, B2, B3 fixed i.i.d. realizations from .47 (0, 1), B4 = 0.

It can be shown that the irrepresentable condition, see formula (2.20), fails to hold
(Problem 13.8). Hence, the Lasso is inconsistent for variable selection in this model.
On the other hand, (C1) holds because of Theorem 13.2, and also (C5) is true.
These are all the conditions for the PC-simple algorithm for a fixed distribution
P. Hence, the PC-simple algorithm is consistent for variable selection. It should be
noted though that the adaptive Lasso is also consistent for this example.
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For the high-dimensional case, we can modify the example as follows. Consider
so = 3 active variables, with design and coefficients as in Example 13.1, and p — 59
noise covariates which are independent from the 3 active variables (and p satisfies
(C2) and the design satisfies (B1) and (C5,(ii))): then, all our assumptions (C1)-(C5)
hold while the Lasso is not consistent for this modification of Example 13.1.

13.9.5 Correlation screening (sure independence screening)

A very simple variable screening procedure for a linear model is given by select-
ing all variables having sufficiently large absolute marginal correlation with the re-
sponse:

SAcorrfscr(T) = {],

pY,j)l >t} (13.45)

where 0 < 7 < 1 is a threshold parameter. The procedure is useful if

A

P[Scorr—scr(f) ) SO] —1 (i’t — 00)

Fan and Lv (2008) use the terminology “sure independence screening” (SIS) for
the correlation procedure in (13.45). They argue that SIS can achieve the screening
property in high-dimensional scenarios. Here, we will derive another justification,
based on partial faithfulness, why correlation screening works at least asymptoti-
cally. Thereby, we note that the estimated version of correlation screening in (13.40)
and (13.45) are equivalent.

13.9.5.1 Asymptotic behavior of correlation screening

For correlation screening, see formula (13.40), we do not require any sparsity. We
define:

(D1) The marginal correlations p, (Y, j) satisfy:
lnf{|pn(yv.])|’ pn(Yv]) 7é Oa .] = 17 apn} 2 Cm

where ¢, = O(n?) with 0 < d < 1/2.
(D2) The marginal correlations p, (Y, j) satisfy:

sup|pa (Y, j)| <M <1.
nj
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Denote by S‘Ll] (@) the correlation screening active set estimated from data using sig-
nificance level «, i.e., the first step in the sample version of the PC-simple Algorithm
16.

Theorem 13.4. Consider the linear model (13.37) and assume (ClI), (C2), (D1) and
(D2). Then there exists a sequence 04, — 0 (n — o) such that:

PSY (at) 2 So] = 1 — O(exp(—Kn'"29)) = 1 (n — o),
Jor some 0 < K < oo depending on M in (D2), and d > 0 is as in (DI).

A proof is given in Section 13.9.6. A possible choice of the regularization parameter
is o, = 2(1—®(n'/?¢c, /2)) where ¢, is the unknown lower bound of non-zero corre-
lations in assumption (D1). As pointed out above, we do not make any assumptions
on sparsity. However, for non-sparse problems, many correlations may be non-zero,
preventing an effective dimension reduction. In such problems, $ (1] can still be large,
for example almost as large as the full set {1,2,..., p}.

Fan and Lv (2008) have shown that correlation (or sure independence) screening is
overestimating the active set Sy, as stated in Theorem 13.4, assuming rather restric-
tive conditions on the covariance Xy. Theorem 13.4 demonstrates that this result
also holds under very different assumptions on Xy when partial faithfulness is as-
sumed in addition.

13.9.6 Proofs

13.9.6.1 Proof of Theorem 13.2

Consider the linear model (13.37) satisfying assumptions (B1) and (B2). In order to
prove that the partial faithfulness assumption holds almost surely, it suffices to show
that the following is true for all j € {1,...,p}:

Bi#0 = Parcor(Y,X|X(©)) £0 a.s. forall C C {;}

(a.s. is with respect to the distribution generating the f3;’s).

Thus, let j € {1,...,p} such that 8; # 0, and let C C {}¢. Recall that Parcor(Y,X )|
X(©)) = 0 if and only if the partial covariance Parcov(Y,X/)|X(©)) between ¥ and
X () given X(€) equals zero (cf. Anderson (1984, page 37, definition 2.5.2)). Par-
tial covariances can be computed using a recursive formula given in e.g. Anderson
(1984, page 43, equation (26)). This formula shows that the partial covariance is
linear in its arguments, and that Parcov(g,X/)|X(€)) =0 for all j € {1,...,p} and
C C {j}“. Hence,
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p .
Parcov (Y, XV |x(©)) = Parcov(/.LJrZﬁ,X(’)+£,X(/)|X(C))

r=1
= Z BrParcov(X N1x(©))
P
= ﬁjParcov(X D1x©) + Z B, Parcov(X "), x| x©)y,
r=Lr#j
Since fB; # 0 by assumption, and smce ParCOV(X (1)|x(€)) + 0 by assumption

(B1), the only way for Parcov(Y,X/)|X(©)) to equal zero is if there is a special
parameter constellation of the f3,’s, such that

Z B Parcov(x ") xU)|x(©)) = fﬁjParcov(X(/),X(/)|X<C)). (13.46)
r=1,r#j

But such a parameter constellation has Lebesgue measure zero under assumption
(B2) (for fixed distribution of X, the probability that the sampled f3,’s fulfill (13.46)
is zero). O

13.9.6.2 Proof of Proposition 13.6

By partial faithfulness and equation (13.42), So C Slmeach] Hence, we only need to
show that Sy is not a strict subset of "], We do this using contraposition. Thus,
suppose that So C S [Mreach] strictly. Then there exists a j € S mieach] such that Jj ¢ So.
Fix such an index j. Since j € § Ireach] | e know that

Parcor(Y, X |X(€)) £ 0 for all C C SIeaen=11\ {} with |C| < myeqen — 1. (13.47)

The argument for (13.47) is as follows. The statement for sets C with |C| = myeach — 1
is due to the definition of iteration mie,cn of the PC-simple algorithm. Sets C with
lower cardinality are considered in previous iterations of the algorithm, and since
S o s> . all subsets C C Slmreacn—1 with |C| < migeach — 1 are considered and
hence, (13.47) holds.

We now show that we can take C = Sy in (13.47). First, note that the supposition
So C Slmreach] and our choice of j imply that

SO g S[mreach] \{]} g S[mreach_l] \{]}

Moreover, Sy C S/each] (strictly) implies that ISo| < |S[’”reach]\ — 1. Combining this
with [Slreach] | < mpqen (see the definition of mgeqen in (13.43)), yields that |So| <
Myeach — 1. Hence, we can indeed take C = Sy in (13.47), yielding that Parcor(Y, X () |

(50)) £ 0.
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On the other hand, j ¢ Sy implies that 8; = 0, and hence Parcor(Y,X)|X(50)) = 0.
This is a contradiction, and hence Sy cannot be a strict subset of Slmreach], O

13.9.6.3 Proof of Theorem 13.3

A first main step is to show that the population version of the PC-simple algorithm
infers the true underlying active set So ,, assuming partial faithfulness. We formu-
lated this step in Proposition 13.6 as a separate result, and its proof is given above.

The arguments for controlling the estimation error due to a finite sample size are
very similar to the ones used in the proof of Theorem 13.1. We proceed in two
steps.

Analysis of partial correlations.

An exponential inequality for estimating partial correlations up to order m, = o(n)
follows from Lemma 13.2. We use the following notation: K" = {C C {1,...,pa}\
{]}’ |C| < mn} G=1,....pn), Zn(Y7j|C) :g(pn(Y7]|C)) andzn(Y7j|C) :g(pn(Y7j|
C), where g(p) = %log(%) is Fisher’s Z-transform. Lemma 13.2 now reads as
follows.

Lemma 13.5. Suppose that the Gaussian assumption from (C1) and condition (C5)
hold. Define L =1/(1 — (1+M)?/4), with M as in assumption (C5). Then, for
m, <n—4and0<y<2L,

sup  P[|Z,(Y,j|C) =z (Y, j|C)| > 7]
CeK™ 1< j<pn
4—(y/L)?

< 000 (exp{ (=4 m)tos ;70 | +exp(-Catn - )

for some constant 0 < Cy < oo depending on M in (C5).

Analysis of the PC-simple algorithm.

First, we consider a version of the PC-simple algorithm that stops after a fixed (i.e.,
non-random) number of m iterations (and if m > Mieqcn, Where fieqcn 1S the esti-
mation analogue of (13.43), we set Sl — § ['hfcach]). We denote this version by PC-
simple(m) and the resulting estimate of the active set by $ (a,m). This construction
is analogous to the PC(m)-algorithm whose population version is described in Al-
gorithm 14.

Lemma 13.6. Assume (C1)-(C5). Then, for m, satisfying my > Meach 5 (see (13.43))
and m, = O(n]’b) (with b as in (C3)), there exists a sequence 0, — 0 such that

P[S'n(a,,,mn) =Son=1- 0(exp(—Kn1_2d)) — 1 (n— ),

for some 0 < K < oo depending on M in (CS5), and d > 0 is as in (C4).
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A concrete choice of o, is a,, =2(1 — db(nl/ 2¢,/2)), where ¢, is the lower bound
from (C4) (which is typically unknown).

Proof. Obviously, the population version of the PC-simple(m,,) algorithm is correct
for my, > Myeach n, se€ Theorem 13.6. An error can occur in the PC-simple(m,,) al-

gorithm if there exists a covariate X () and a conditioning set C € K;-”” (although
the algorithm is typically only going through random subsets of K;””) where an er-
ror event Ejc occurs; Ejc denotes the event that “an error occurred when testing
pn(Y, j|C) = 0” (either a false positive or false negative decision, see (13.49) and
afterwards). Thus,

P[an error occurs in the PC-simple(im,,)-algorithm]

<P U Eil<op!) sup PE;, (13.48)
CeK™ 1< j<pn Cek;™si

using that the cardinality of the set {C; C € K", j=1,..., p,}, indexing the union
in (13.48), is bounded by O(p™*!). Now, let

I 11
Ej|C:Ej|CUEj‘C, (13.49)
where

typeIerrorEj‘C :\/n—|C|=3|Z,(Y,j|C)| > @~ (1 — a/2) and z,(Y, j|C) = 0,
type I error Ejf- - \/n—|C|=3|Z,(Y,jIC)| < @~ '(1 — &/2) and z,(Y, j|C) # 0.

Choose o = o, = 2(1 — ®(n'/%¢, /2)), where ¢, is from (C4). Then,

sup P[E§|C]
C€K}nn A<j<pn

= sup P(1Zu(Y,/IC) ~2a(Y.jIC)| > v/n/ (= ICT ~3)cu/2)
CeKj’.”",j
< O(n)exp(—Cs(n—my,)c2), (13.50)

for some 0 < C3 < oo depending on M in (C5), using Lemma 13.5 and the fact that

log(jjrgi) < —62/2 for 0 < & < 2. Furthermore, with the choice of & = o, above,

sip  PIEN] = sup P(|Z,(Y.jIC)| < V/n/(n = [CT=3)eu/2)

CeK" 1< j<pn CeK™,j

< sup P(1Z(0,JI0) = (Y. JIC)| > eal1 = v/n (1= ICT=3)/2))

Cek™,j
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; 2a(Y, |C) #0} > ¢y si = [Llog(H2)| >
> 2(Y,J|C) # 0} = cq since [g(p)| = |5 log(7=5)| =
|p| for all p and using assumption (C4). This shows the crucial role of assumption
(C4) in controlling the type II error. By invoking Lemma 13.5 we then obtain:

because infCeK;"" za (Y, JIC)

sup P[E%C] < O(n)exp(—Cy(n—my,)c2) (13.51)
CGK}"”,]’ ’

for some 0 < C4 < o depending on M in (C5). Now, by (13.48)-(13.51) we get
PJ[an error occurs in the PC-simple(m;,,)-algorithm]
< O(py"* nexp(—Cs(n—my)cy))
< O(na(mn+1)+1 CXp(*Cj (I’l - mn)n—Zd))
=0 (exp (a(m,, +1)log(n) +log(n) — Cs(n' =4 — mnnfzd)))
= O(exp(—Kn'29)),

for some 0 < K < oo depending on M in (CS5), because n' ~2¢ dominates all other
terms in the argument of the exp-function, due to m, = O(n'~") and the assumption
in (C4) that d < b/2. This completes the proof. a

Lemma 13.6 leaves some flexibility for choosing m,. The PC-simple algorithm
yields a data-dependent stopping level 7itreach 4, that is, the sample version of (13.43).

Lemma 13.7. Assume (C1)-(C5). Then,

P[”hreach,n = mreach,n] =1- O(CXp(_Knlizd)) — 1 (” — °°)
for some 0 < K < oo depending on M in (CS5), and d > 0 is as in (C4).
Proof. Consider the population version of the PC-simple algorithm, with stopping
level Myeaen as defined in (13.43). Note that myeach = Myeach n = O(n' ) under as-
sumption (C3). The sample PC-simple(m,,) algorithm with stopping level in the
range of Myeach < M, = O(nl”’), coincides with the population version on a set

A having probability P[A] = 1 — O(exp(—Kn'=2?)), see the last formula in the proof
of Lemma 13.6. Hence, on the set A, fitreach n = Mreach- O

Lemma 13.6 and 13.7 together complete the proof of Theorem 13.3.

13.9.6.4 Proof of Theorem 13.4

By definition, S , € S[]], where S is the set of variables from correlation screening.

Denote by Z,(Y, j) the quantity as in (13.20) with C = @ and by z,(Y, ) its pop-
ulation analogue, i.e., the z-transformed population correlation. An error occurs
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when screening the jth variable if Z,(Y, j) has been tested to be zero but in fact
zu(Y, j) # 0. We denote such an error event by E;I . Note that

sup P[E;I] < O(n)exp(—Cync?),
1<j<pn

for some 0 < C} < oo depending on M in (D2), see formula (13.51) above (we do not
use any sparsity assumption for this derivation; we do invoke (D1) which requires
a lower bound on non-zero marginal correlations). Thus, the probability of an error
occurring in the correlation screening procedure is bounded by

PlUi<j<p,Ef] = O(pan)exp(—Cinc;) = O(exp((1+a)log(n) — Cin' =)
= O(exp(~Con' 1))

for some 0 < C; < e depending on M in (D2) (since 0 < d < 1/2). This completes
the proof. |

Problems

13.1. Consider the regressions in (13.4). Discuss that it is always possible to find
such a representation, assuming that X (M,...,X) have a multivariate Gaussian
distribution. Some textbooks (e.g. Section 2.5 in Anderson (1984)) may be used to
recall the basic properties of conditional distributions from a multivariate Gaussian.

13.2. For the negative log-likelihood of a multivariate Gaussian distribution, derive
formula (13.6).

13.3. Ising model
Show that (13.15) holds.

13.4. Show that (13.16) holds, establishing the equivalence of non-zero parameters
in the Ising model and non-zero coefficients in logistic regressions.

13.5. Faithfulness
Show that formula (13.17) holds, assuming the faithfulness condition.

13.6. Give a proof of Proposition 13.3.
13.7. Derive the statement in Corollary 13.2.

13.8. Show that the irrepresentable condition fails to hold in Example 13.1.



Chapter 14

Probability and moment inequalities

Abstract The chapter is a mini-guide to empirical process theory, in particular prob-
ability and moment inequalities for the empirical process indexed by functions. We
give an essentially complete (but often rather compact) treatment of the results we
need in the previous chapters.

14.1 Organization of this chapter

This chapter contains some important probability and moment inequalities for the
maximal difference between averages and expectations. We start out with summa-
rizing a few elementary but useful results. We then reprove Bernstein’s inequality
as it was given in Bennet (1962). Section 14.4 reproves Hoeffding’s inequality (Ho-
effding, 1963). In Section 14.5, we provide the moment and probability inequal-
ities for the maximum of a finite number, say p, averages. Section 14.6 extends
these inequalities to the case of arbitrary many averages: it presents a concentration
inequality of Bousquet (2002), of Massart (2000a), and concentration inequalities
for sub-Gaussian random variables. Section 14.7 reviews some symmetrization and
contraction inequalities. These are applied in Section 14.8 to obtain concentration
results for Lipschitz loss functions. In Section 14.9, we discuss some issues related
to least squares estimation with random design. Symmetrization moreover allows
one to derive bounds assuming only lower order moments, as we shall show in Sec-
tion 14.10. Section 14.11 invokes entropy arguments to arrive at the increments of
the empirical process for the sub-Gaussian case. In Section 14.12, we present some
concrete entropy results for illustrating the bounds of the preceding section.

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 481
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 14,
© Springer-Verlag Berlin Heidelberg 2011
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14.2 Some simple results for a single random variable

14.2.1 Sub-exponential random variables

A random variable X is called sub-exponential if, for some constants K and oy,

2K*(EXI/K 1 —E[X|/K) < 63. (14.1)

Our first result is a preliminary lemma that can be used to prove Bernstein’s in-
equality (see Lemma 14.9), and that moreover will help the reader to appreciate
Bousquet’s inequality (see Theorem 14.1).

Lemma 14.1. Let X € R be a random variable with EX = 0. Then it holds that

logEexp[X] < Bl — 1 —E|X|.

Proof. For any ¢ > 0,

X X 1-X+X-— X1 —|X|+Xx -
exp[X—c]—lgefpi_'_H—lze 1++ c_¢ 1—\'—|+ c
C c C

Let
c=EeX -1 -E|[x|.

Hence, since EX = 0,

EeXl —1-E|X|—
Eexp[X —c]—1< ¢ X €_

0.
- 14¢

Note that (14.1) implies that for all m > 2,
!
EjX|" < %Km—%g.
Conversely, we have:

Lemma 14.2. Suppose that for some positive constants K and oy, and for all m €
{2,3,...},
E|X|" < %!K'"’ch.
Then
22K (Bexpl}¥|/[2K1] -1 - X /261 ) < 265,
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Proof. Let L = 2K. Then

> 2 E|X|"
2L*(Eexp[|X|/L] - 1-E|X|/L)= Y T

m=2

B B
=& 2 T 1-K/L

14.2.2 Sub-Gaussian random variables

A random variable X is called sub-Gaussian if, for some constants K and oy,
K2(EX/K _1) < 2. (14.2)
We relate (14.2) to the behavior of moment generating function of X.

Lemma 14.3. Let X € R be a random variable with EX = 0 and with, for certain
positive constants K and oy,

K2(EXI/K* 1) < 62

Then for all L,
EeX/t < exp[2(K* 4 o7) /L.

2
Proof. Take f:=1+ % By Chebyshev’s inequality, we have for all # > 0,
P(X| > 1) < Bexpl—*/K7).

Hence, form € {2,3,...},

E|X|" < B / exp[— /K2dt
JO

:ﬁKmF(’Z—H) g[ﬂ’”K’”F(’;—i-l),

where in the last inequality, we used 8 > 1. So, for L > 0,

|
X/L __
Ee / —1+m2:’2%EXm/Lm
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<1+ Z II:E JrI;ﬁ’”K’”/L’" <1+ Z

m=2 m=2

ﬁme/Lm
rs +1)

i g BRIER 5 R

m+1 m=1 m+§)

m=1

= 14 (14 BK/L)(exp[BK*/L*] —1).

; BIPT KL
z:" I'(m+1)

Now, invoke that for all x > 0, x < e"z, which implies
1+ (14x) (" —1) <.

The result for L < 0 follows by replacing X by —X. ad

A random variable X has sub-Gaussian tails if for some non-negative constants a
and K,
P(|X| >1) < 2exp[—t*/K?*], t > a.

By Chebyshev’s inequality, sub-Gaussian random variables have sub-Gaussian tail
behavior. The next lemma shows that the converse is also true.

We invoke the notation
xq = x1{x > 0},

and stress here that (x;)? = x*1{x > 0} # x%.

Lemma 14.4. Suppose that for some constants K > 0 and a > 0 and for all t > a,
P(IX| > 1) < 2exp[-21%/K7).

Then

(1X|-a)+]

]Eexp{ % ] < 14 2exp[—24°/K?].

Proof. This follows from

e e AL Gl
<1+/ (exp[ ;a)+]22u>du

< 1+/ P(|X| > a++/K?logu)du < 1+2/ exp[—2(a+ /K2 logu)? /K?|du
I I

< 1+2exp[f2a2/K2]/ exp[—2logu] = 1+ 2exp[—2a*/K?].
1
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It is quite clear that if X is sub-Gaussian, then Y := X? is sub-exponential. We
present the next result for later reference.

Lemma 14.5. Suppose that for some positive constants K and 0y,
K*(Eexp[X?/K?] —1) < of.

LetY := X2 Then for allm > 2,

|
E|Y —EY|" < %(21(2)"’*2(21{00)2.

Proof. Clearly,
Eexp[Y/K*] -1 < o3 /K.
Therefore
E|Y|™/K>™ < m!\(Eexp[Y?/K*] —1) < m!cs/K>.
Hence
E|Y|" < m!ogK>" 2.
But then

E|Y —EY|" <2" 'E|lY|" < m!cg2m K> 2

m! _
= 7(21«;0)2(21(2)'" 2,

14.2.3 Jensen’s inequality for partly concave functions

We will derive m-th moment inequalities (m > 1) from exponential moments (see
e.g. Lemma 14.7, Lemma 14.12, Corollary 14.1, and Lemma 14.14). For this pur-
pose, we present the following lemma.

Lemma 14.6. (Jensen’s inequality for partly concave functions) Let X be a real-
valued random variable, and let g be an increasing function on [0,00), which is
concave on [c,) for some ¢ > 0. Then

Eg(1X]) < g |E[X[+cP([X] <c)|.

Proof. We have

Eg(|X|) = Eg(IX)K|X| = ¢} +Eg(IX[){|X| < c}
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< Eg(IXI{[X| = ¢} + g(c)P(IX] < c)

—E [g<|X|>

X|> } P(X| > 0+ 5()P(X] < ).

We now apply Jensen’s inequality to the term on the left, and also use the concavity
on [c,e0) to incorporate the term on the right:

Be(x) < ¢ [5 (1|11 2 ¢) | POXI 2 0+ (IPYI <0

<g{E|X+cP(|X| <c)}

Application of the previous lemma gives
Lemma 14.7. We have for any real-valued random variable X, and all m > 1,

E[X|" < log" [Eelxl ~1 +em*1} .

Proof. The function
g(x) =log"(14x), x>0,

is concave for all x > ™! — 1. Hence, by Lemma 14.6,

E|X|" = Elog" [e‘Xl -1+ 1}

< log" [E(e‘x‘ D)1+ - 1)} .

14.3 Bernstein’s inequality

In this section, we let Zi,...,Z, be independent random variables with values in
some space 2 and we let ¥ be a real-valued function on 2, satisfying for a positive
constant K,

R ml
Ey(Z) =0, Vi, ;;EW(Z,-)V” < 7K" ,m=273,.... (14.3)

First, we derive a bound for the exponential moment of an average.
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Lemma 14.8. Assume (14.3). For all L > K, we have
n

Proof. This follows from Lemma 14.1, after noting that

E|y(Z;

iE{wz, L _ \/L} ZZ me'

=1 m=2i=

= @E;Kﬂ)m = T 22(1-K/L)

O

The bound of Lemma 14.8 leads to Bernstein’s inequality, as given in Bennet (1962).

Lemma 14.9. (Bernstein’s inequality) Assume (14.3). Let t > O be arbitrary. Then
( Zy >Kt+xf><exp[ nt].

Proof. Let a > 0 be arbitrary. In Lemma 14.8, take
K/L=1—(1+2aK/n)~'/?,

and apply Chebyshev’s inequality to obtain

2
a
<ex .
( > p[ aK +n++2aKn+n?

Now, choose a/n = Kt + V2t O

HM:

14.4 Hoeffding’s inequality

This section presents Hoeffding’s inequality as obtained by Hoeffding (1963). Let
Z\,...,7Z, be independent random variables with values in some space 2 and let y
be a real-valued function on %, satisfying

Ey(Z) =0, |y(Z)| < ci Vi. (14.4)

Lemma 14.10. Assume (14.4). For all L > 0,
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2
Y Ci:l

gesa| £y 1| < xn [

1

Proof. Write X; := y(Z;), i = 1,...,n. By the convexity of the exponential function
exp[x/L], we know that forany 0 < o < 1,

exploux/L+ (1 — a)y/L] < aexplx/L] + (1 - ) exply/L].

Define now
o — ci—X;
26‘,‘
Then
Xi = oi(—ci) + (1 — o4)ci,
SO

exp[X;/L] < ogexp[—c;/L]+ (1 — o) exp[ci/L].
But then, since Ea; = 1/2, we find

Eexp[X;/L] < %exp[—ci/L] + %exp[ci/L].

Now, for all x,

] +ewpi] =2 F A
exp|—x| +exp[x] =2 ,
= (2k)!
whereas
) o 2k
explx”/2] = Z bRl
k=0
Since
(2k)! > 2kk!,

we thus know that
exp[—x] +exp[x] < 2exp[x*/2],

and hence )
for:
Eexp[X;/L] <exp [21"2} .
Therefore,
n " c?
E X;/L| < ==
exp l; ;/L| <exp [ 12 }

O

Consequently, using Chebyshev’s inequality, we have sub-Gaussian tails for aver-
ages.

Lemma 14.11. Assume (14.4). We have for allt > 0
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l‘2
p([gref=0) <2e0] 35

Proof. It follows from Chebyshev’s inequality and Lemma 14.10 that for all L > 0

Z < i Ci2 o
v(Z exp | =55 7|

Take L = (Y, ¢?)/t to complete the proof. O

14.5 The maximum of p averages

14.5.1 Using Bernstein’s inequality

Let Zy,...,Z, be independent Z’-valued random variables, and ¥i,...,%, be real-
valued functions on 7, satisfying for j =1,..., p,

m!
Ey;(Z:) =0, Vi, 721&\% )™ < Z'K’”*Z,m:2,3,.... (14.5)

We start out with an inequality for the m-th moment of the maximum of p averages.

Lemma 14.12. Assume (14.5). We have form =1,2,...

(Efz‘pinm )
- (Klog(Zp—i—e’”1 -p) n \/210g(2p+e’”1 —p))m

n n
Proof. By Lemma 14.7, for all L > 0, and all m

n
E <max | Zw(z,»nm) < L"log"
7=l

Eexpmax|2% )| /L] —1+em!
|

From Lemma 14.8, and invoking el <e'+e ¥, we obtain for L > K,

L™ log"

Eexp m]ax|ZyJ )|/L] —

1=
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S Lmlogm |:p{2,exp |:2(L2n—LI():| - 1} +eml:|

n
< IMoo™ | (2 m—1 _
<triog|Cr e =)o 5T |

(e ]

2(L—K
Now, take
n
L=K .
+\/210g(2p+e’”—1 -p)
O
We define
2log(2 Klog(2
A(Kon,p) = og( p) og(2p) (14.6)

n n

In what follows, the quantity A(K,n, p) plays an important role: it will appear in
several places. From an asymptotic point of view, that is, when » is large and K is
not too large, the first (square-root) term in the definition of A (K, n, p) is the leading
term.

In most of our applications, p will be large, in particular, it will be much larger than
m. To simplify the expressions for this case, we have, as corollary of Lemma 14.12

Corollary 14.1. Assume (14.5). For all m < 1 +logp, it holds that

max
1<j<p

We also put forward a probability inequality involving A (K, n, p).

Z Yi(Z,

n;

> < lrn(1<7’17p)'

Lemma 14.13. Assume (14.5). We have for all t > 0,

P | max
1<j<p

Proof. Bernstein’s inequality says that for each j,

li?’j(zi)‘ > KH—\/Z—F?L(K,n,p)) < exp|—nt].
1

n.=

( Zy/ >Kt+\ﬁ><exp[ nt].

The result now follows immediately from

2log2p  log(2
Kt + V21 + A(K,n,p) = Kt + V2 4| —2L 1 0g(2p)
n

n
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2K(;+1°g(2p))+ 2<t+10g(2p))_

N

1

n n
O
Example 14.1. Consider independent random variables X1, ..., X, in R”. Define
1 ; :
O'jz = - E|Xi(j)|2,j:1,...,p.

1

Suppose that the Xi(j ) are, uniformly in j, sub-Gaussian: for some constants K and
og.
KX (Eexpl| X\ 2/K*| 1) <63, j=1,....p.

Then by Lemma 14.5, the |Xi(j ) |2 are sub-exponential, with for all m > 2, and all j,

m

. . !
E‘x}”ﬁ —ExWP < %(2[(2)’”_2(%(60)2.

We may normalize this to

|Xi(])‘2 B E|Xi(])|2

m m! K m—2
<= = .
-2 <Go)

2KO'() 2K(70
Let
2 I e
J :;;p{, |7J:17 P
Then, from Corollary 14.1, for m < 1 +logp,

52 _ g2

70 )g(ZKco)’”/l’”(K/Go,n,p)-

E ( max
1<j<p

It follows moreover from Lemma 14.13 that for all 7,
P ( max |6]2 — sz| > 2K2t+2K60@+2K601(K/60,n,p)> < exp[—nt].

1<j<p

14.5.2 Using Hoeffding’s inequality

Let Zi,...,Z, be independent Z -valued random variables, and ¥i,...,%, be real-
valued functions on 7, satisfying for j =1,..., p,

]Ej/j(Z,') = O, ‘}/(Z,)| < Cijs Vi. (]47)
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Lemma 14.14. Assume (14.7). For m > 1 and p > ", we have

m/2 n m/2
< [210g(2p)} max [Z cij} .
SIsP L=

m

Zn: vi(Zi)

i=1

E max
1<j<p

Proof. By Hoeffding’s inequality (see Lemma 14.10), for all L > 0 and all j,

n 2
i=1 ci,j:|

Bexp| 3 12)/L|< o | =

In view of Jensen’s inequality

n m

E max Z Yi(Zi)

1<j<p i=1

n

Y v(@)

i=1

/

< L’”logm{p max <]Eexp l /L] - 1) +eml}
1<j<p

n
2 2 -1
< L"log" {plrgfgp (Zexp {Z i/ (2L )] - 1) +e” }

i=1

L|—1 +em_1}
<Jj<p

< L"log" { Eexp Lmax

i Yvi(Zi)

i=1

no2 "
<L {10g(2p)+ max Z'l”} .

1<j<p 202
Choosing
n 2
i—1Ci
L:= =L
glféxp 2log(2p)
gives the result. O

The extension of Hoeffding’s probability inequality to p variables reads as follows.

Lemma 14.15. Let

n
2. 2
lellz =Y ¢i /n.
i=1
We have for allt > 0,

log(2
P ( max > ||c||,,\/2 (;2 + M)) < exp|—nt?].
1<j<p n

Proof. By Lemma 14.11, we have for all # > 0 and all j,

n

127’1(20

nia
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Hence, using the union bound,

log(2
P (gg.a} > ch <r2 T g(”))) < 2pexp[—n® —log(2p)].
SJSp

n

lZ?’J‘(Zi)

i3

n

O

14.5.3 Having sub-Gaussian random variables

Let Zi,...,Z, be independent 2 -valued random variables, and ¥i,...,¥, be real-
valued functions on 2, satisfying for j=1,...,p,

EY;(Z;) =0, K} (Eexp[y} (Z;)/K?] 1) < 05, V i. (14.8)

Lemma 14.16. Assume (14.8). Define

n

R?:= Z(K,2 + G&[)/n.
i=1

Then
S log(2p) 2
P (Z; >Ry (8| 2+ =2 < —nt*],
<1I2?<Xp|,§{%( )/n|_ \/ ( + n < exp[—nr]
o | (Z)
Y Y(Z
1=l AV |~
Eexp Lrll]aé(p 16K <2p—+1.

Proof. By Lemma 14.3, for all j and L,
Eexp(y;(Z)/L] < exp[2(K} +05,)/L*], i=1,...,n.

Hence for all j and L,
n
Eexp {Z yj(Zi)/(nL)} < exp[2R2/nL2].
i=1

It follows from Chebyshev’s inequality that

2

P(I;V(Zi)/ﬂ > t> < 2exP[i’; _ L] ,
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Take L = % to get

P(‘ifY(Zi)/n‘ > t) < 2exp {—g;:z} .

One easily sees that this implies the probability inequality for the maximum over j.
Moreover, by Lemma 14.4 (where we take a = 0),

|z;uy,»<xl->2} s

Thus

X 1)) - X v (X))
E 2= 2T ) < N N RS
TP, nerr | T ,:21 P hl6R? *

<2p+1.

14.6 Concentration inequalities

Concentration inequalities have been derived by Talagrand (e.g. Talagrand (1995))
and further studied by Ledoux (e.g. Ledoux (1996)), Massart (Massart, 2000a) and
Bousquet (2002) and others. Massart (2000b) has highlighted the importance of
these results for statistical theory.

Let Z;,...,Z, be independent random variables with values in some space 2 and
let I' be a class of real-valued functions on %. Define

14.6.1 Bousquet’s inequality

Theorem 14.1 below is a result on the amount of concentration of Z around its mean,
which has the flavor of a Bernstein inequality.

Theorem 14.1. (Concentration Theorem (Bousquet, 2002)) Suppose
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Ey(Z)=0Yyel Vi, stupIEyz
n i Zyer

and moreover, for some positive constant K,
7]l <K,Vyerl.

Then for all L > 0,
logEexp[n(Z—EZ)/L]

<n[eX't —1 —K/L|[2EZ/K +1/K?].

To appreciate Theorem 14.1 one may compare it with Lemma 14.1.

The probability inequality given in the following corollary can now be derived in
the same way as in Lemma 14.8 and Lemma 14.9.

Corollary 14.2. Suppose the conditions of Theorem 14.1 hold. We have for allt > 0,

K
P (Z >EZ+ % +V21/1 +2KEZ) < exp|[—nt].

Bousquet’s inequality indeed hardly pays a price for its generality. Let us make a
comparison with Lemma 14.13, which is about the special case where |[I'| := p is
finite. We assume now that the functions are bounded by K, which implies (14.5)
with K replaced by K /3.

Corollary 14.3. Suppose the conditions of Theorem 14.1 hold and that |I"| = p.
Then for all t > 0,

P | max
1<j<p

where, from Corollary 14.1 (with m = 1) and Corollary 14.2, we may take

! Z Yj(Zi)’ > A(t)> < exp|—nt],

i3

A()fﬂt( np +\f\/ +2K)L np>

In fact, Lemma 14.13 tells us that we may take

Ar) = tf+x( p)+@.
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14.6.2 Massart’s inequality

The next inequality from Massart (2000a) has the flavor of a Hoeffding inequality.

Theorem 14.2. (Concentration Theorem (Massart, 2000a)) Suppose Ey(Z;) = 0
and |Y(Z;)| < c;y for some real numbers c;y and for all 1 <i<nandy eI, where

n
suchlz’y/n <.
yeli=]

Then for any positive t,

nt*
P(Z >EZ+1) <exp < |

14.6.3 Sub-Gaussian random variables

Bousquet’s and Massart’s concentration inequalities require that the random vari-
ables involved are bounded. In this section, we consider the sub-Gaussian case.

The next lemma will be applied with, for all s, the random variables X; of the form

X, := max
1<j<N;

)

\}ﬁiy;@)

where for s € {1,...,S} (where S € NUeo), and for j = 1,...,Nj, ¥; are given func-
tions on 2 indexed by j and s, which satisfy the assumption (14.8). We will need
the entropy results of Section 14.12 to complete the picture: see Theorem 14.7.

Lemma 14.17. Let Xi,...,Xs be positive random variables, that satisfy for some
positive constants {8, Ny}3_,,

Eexp[Xf/c‘i?] <142N,, s=1,...,S.
Define
N
a:=2v2Y &+/log(1+2Ny) Vs,
s=1
and
s
K:=4) 8./s.
s=1

Then for all t > a,
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S 2[2
P<ZIXS > t) < 2exp {_KZ} ,
—
and moreover

2

< 14 2exp[—24°/K?].

Eexp [(Z}Llf{s—aﬁ}

Proof. Define, forr > a,

, s=1,...
t 2Y0 1 8/5

N

Then

and hence

Fix now some s. By Chebyshev’s inequality,

P(X, > 1ny) < (1+2N;)exp[—1*n2 /82|

<ex t2nSZ <ex Zt—zs
Hence s s
2125 21
P X;>t) < ——1 <2 —— .
(Lzr) < Loo| T <2 | ]
Insert Lemma 14.4 to finish the proof. a

14.7 Symmetrization and contraction

In order to be able to apply Bousquet’s or Massart’s inequality, one needs a bound
for the mean [EZ. The results in this section are often useful to obtain such a bound.

A Rademacher sequence is a sequence €y, ..., &, of i.i.d. copies of a random variable
€ taking values in {+1}, with P(e =+1) =P(e = —1) = 1/2.

Theorem 14.3. (Symmetrization Theorem (van der Vaart and Wellner, 1996)) Let
£€1,...,&, be a Rademacher sequence independent of Z1,. ..,Z,. Then for any m > 1,



498 14 Probability and moment inequalities

m m
<sup ) <2"E <sup Zs, ) > ) (14.9)
yel’ yel’

i=
One may also formulate a symmetrization result for probabilities: see Problem 14.5.

Z{v EY(Z)}

i=

Let us now find a bound for the right hand side of (14.9). For simplicity, we con-
sider only the case m = 1. Section 14.11 considers sub-Gaussian “moments”. We
will apply the chaining argument developed by Kolmogorov, see e.g. van der Vaart
and Wellner (1996), van de Geer (2000), and the references therein, and see also
Talagrand (2005) for the refinement to so-called generic chaining. We will use the
entropy of a class of functions (see also Section 14.11).

Endow I' with the (random) norm
! 2
7l =[5 Y ().

Definition For 6 > 0, the §-covering number N(38,I,| - |[») of (I',| - ||») is the
minimum number of balls with radius O necessary to cover the class I'. The entropy
is H('>F7 H : Hn) = IOgN('aFv || : Hn)

Lemma 14.18. Suppose (Z1,...,Z,) = (z1,...,2n) is fixed. Define

Ry = sup [|][n,
yell

and Ny =NQ27*Ry, I, || -||n), s = 1,...,S, where
S:=min{s > 1: 27° <4/y/n}.
Let €1,...,&, be a Rademacher sequence. We have

th Y(Zi

4R,

)<6Z log LU CRROPETY v

(sup
yer|n

Proof. Let fors =0,1,2,..., {yj}ljv;l be a minimal 2R,-covering set of (I, || - |),
with Ny = N(27*R,,, I, || - [»), and for each v, there exists a ¥* € {¥],..., 1, } such
that ||y — ¥*|l, < 27°R,. Choose 7° = 0. Now we insert the chaining argument. We
get

BM—‘

HM:

1 & S 14
RTCIEN W 1@ +[3 Eetr—r)

where in the above expression, each of the y* are taken as 27°R,-approximation of
7. Clearly,
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”11 _Xn;&'(y— Y)(zi)

< H’y_ 'yg”n < 275Rn < 4Rn/\/’2-

Then, by Lemma 14.14 (with a slight improvement for the case m = 1), and using
17 =" la <3%x27°R, forall s,

2log(1+ N;N;_ 4R
)< T
n Vn

Zs,y 7)) (zi)

5 [log(1+Ny) 4R
6 — Y2 R,+ —=.
= A; n n + \/ﬁ

The next corollary can be invoked in Section 9.5. The bound on the covering number
that we use here is based on entropy calculations for convex hulls, see Lemma 14.28.

(sup
yer |1
ad

Corollary 14.4. Let 7y, . ..,Z, be independent random variables with values in %
and I" be a class of real-valued functions on % . Suppose that for some non-random
constants R, < o and A > 0,

|| y”n g Rm

and
log(1+NQ275R,, T, || -|]n) <A2*,V0<s<S,

where
S:=min{s >1: 27° <4/\/n}.

Then, using the bounds in Lemma 14.18, and the bound S < log,n/2, we get, for a
Rademacher sequence €,...,&, independent of Zy,...,Zy,
Ry
<= (3\/glog2n+4> .

1
E| sup|-
<7€F n vn
Massart’s Inequality (Theorem 14.2) then yields

(78/16112 Ze, ’>Rf(3f10g2n+4+t>>§exp{—n::}

Now, desymmetrizing (see Problem 14.5) gives that for n > 8K?2,
1 & 4R
=Y vz)| > —>=

P | sup (
(yeF = v

Tailoring the result for the demands in Section 9.5, we have as a consequence, for
all T > 1, and for Rﬁ < (82 A I)M,%, where € > 0 and M,, > 0 are certain constants

n

Y ev(z)

i=1

2
3\/X10g2n+4+4t)> <4exp [—ns}
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- 8eM, T
P()s/lellgn;y(Zi) > 7 (3\F10g2n+4)>
2 2(g2
<4exp[_T (3\/Zlog21;+4) (e \/1)]. (14.10)

When I is a collection of linear functions {fg(-) = Z?:] Bivi(-): B € RP}, one
can apply Holder’s inequality

P n 1/r
Esup|ze,fﬁ 1< suplBl e (Z|Zeiw,~<zi>|r) ,
j=1 i=1

where 1 < g < e and 1/g+ 1/r = 1. Of special importance here is the case ¢ = 1
(r = o0): it yields a bound in terms of the ¢;-norm of 3.

In the case where the functions in I" are not linear, but some Lipschitz function of a
linear function, the following contraction inequality is very useful.

Theorem 14.4. (Contraction Theorem (Ledoux and Talagrand, 1991)) Let z1,. ..,z
be non-random elements of % and let % be a class of real-valued functions on % .
Consider Lipschitz functions ; : R — R, i.e.

[%(s) =% @) < s3], Vs,5€R.

Let €1,...,&, be a Rademacher sequence. Then for any function [*: 2 — R, we

have
sup
fez

<2E | sup
feF

=

Zsz{% Zz '}’z Zz }D

Zez l f*(zl))‘>

i=1

14.8 Concentration inequalities for Lipschitz loss functions

We provide probability inequalities for the set .7 as given in Section 6.6 and Section
6.7, for the case of Lipschitz loss.

Consider independent random variables {Z;}f‘zl, with (fori =1,...,n) Z; in some
space Z . For f: 2 — R, define

117 = Zfz D5 111 = Ellf17-
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Let, for all i, % : R — R be given functions. Let {y,...,y,} be a given dictionary
on &, and define

p
fp=Y Bjwj, BER".
j=1
Assume 7% is a Lipschitz function, with Lipschitz constant L not depending on i:

[%:(s) — %(5)| < L|s—3] Vs, € R. (14.11)

Define the empirical process

valB) = LY [ ns5(2) —Enlfs ()] B e P,

i3
Let 5* be fixed. For all § > 0, we define the random variable

Zs:= sup [va(B)—Va(B")I/V/P;

Ifp—rp=lI<6

and, for all M > 0, we define

Zy = sup [Va(B) = Va(BF)|.
I1B—B*Ilhi=M

Lemma 14.19. Assume (14.11). We have (for all 6 > 0)

EZs <48L/+\/n.

Proof. Without loss of generality, we may assume that Y7, Ey” (X;)w(X;)/n =
1, so that [|fg — fg+|l = [[B — B*|l, and ||y;|| =1 for all j. Let &,...,€, be a
Rademacher sequence, independent of z := Z;,...,Z,. By the Symmetrization The-
orem (Theorem 14.3) combined with the Contraction Theorem (Theorem 14.4), we

have
n

VPEZs <2E  sup

I fp—1p+ ||<5

( (@) =1l ) )|
Ea—

But, in view of the Cauchy-Schwarz inequality,

<J4LE sup
Ifp—rfp=lI<6

2

‘gez<fﬁ @) | <151 L ez

Jj=1

and
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P 2 p
E:E: 4'2:12V0(ZJ = —.
=S
O
Lemma 14.20. Assume (14.11). We have (for all M > 0)
2log(2p)
EZy < 4ML\/ —="2F ( max ||wj]l, ) -
n 1<j<p
If we assume that for all m > 2 and all j, and for some constant K,
. Z]EW// i< B,
we furthermore have
EZy <4MLA(K,n,p),
where
2log(2 Klog(2
A(Kon,p) = < g(2p) | Klog( p)>.
n n
Proof. Let ¢,...,&, be a Rademacher sequence, independent of z := Z;,...,Z,.

By the Symmetrization Theorem (Theorem 14.3) combined with the Contraction
Theorem (Theorem 14.4), we have

EZy <2E  sup
1B-B*l1<M

Y (npt) — i @)

<4LE sup g (fﬁ(zi) _f[i*(zi)) ‘
I1B—B*Ih =M

At this point we invoke Holder’s inequality:
1 & 1
72 < (Zi)>’<M max |—
ni= I<j<p

By Hoeffding’s moment inequality (Lemma 14.14),

Z&% m%@mE(

n

sup
[B=B*li<M

E max
1<j<p

n?;
Under the assumption
- Z Ely;(Z Km g

it furthermore holds, using Bernstein’s moment inequality (Lemma 14.12),



14.8 Concentration inequalities for Lipschitz loss functions 503

<
Elrgjai(p " E 81% A(K,n,p),
with
2log(2 Klog(2

n n

O

Example 14.2. Let Yy,....,Y, be independent % valued response variables, % C R,
and xp, ..., x, fixed co-variables in some space 2. Suppose that the y; are functions
on 2", with ||y;|, < 1 for all j. We assume that the loss function Py is of the form

Py (x1,Y:) = v(¥i, fp (xi)) +ci( fp),

where c;(fg) is a constant depending (possibly) on fg and i. We further assume for
alls,5€ Randally € %,

[7(y,8) = ¥(3,8)] < Ls — 3] (14.12)

2log(2 2log(2
EZy < SML [2log(2p) vl < SMLy [2log(2p)
n 1<j<p n

Massart’s concentration inequality (Theorem 14.2) yields

P (ZM > 2ML (4\ / 21%(2’)) + ﬁ)) < exp|[—t

Note that the result does not require any higher order moments for the response
variables. This is due to the Lipschitz condition, i.e., to the fact that py is a robust
loss function.

Then

If we assume a uniform L..-bound K for the dictionary {y;}, we can apply Bous-
quet’s concentration inequality. As illustrated in the previous example however, such
abound K is not a sine qua non.

Theorem 14.5. Assume (14.12) and that

*Z max Ey <1,
l<J<[)

and that for some constant K,

o <
max [yl < K.

Let
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7 fmezn (K)o B 2 e () ]

where

A g,n,p . 210g(2p)+K10g(2p).
3 n 3n

Then
P(7) > 1—exp[—t].

Proof. This follows from combining Lemma 14.20 with Bousquet’s probability in-
equality (Corollary 14.2). O

14.9 Concentration for squared error loss with random design

This section completes the results of Section 6.6 and Section 6.7 for the case of
least squares estimation with random design. We prove probability inequalities for
the empirical process associated with squared error loss, where random design gives
an additional term to handle as compared to fixed design. Indeed, the empirical
process consists of two terms, a linear term involving the noise, and a quadratic
term involving only the regression functions. Subsection 14.9.1 handles the first
term, Subsection 14.9.2 handles the second term, and Subsection 14.9.3 combines
the two.

Let {(&,X;)}}_, be independent, and satisfy fori=1,...,n, thatg; € Rand X; € 2~
are independent, and moreover that

|
Ee; =0, E|g|™ < %Kg"*zo% m=23 ... (14.13)

Let 7 = {fg =L"_, Bjy;: B € R”} be aclass of linear functions on 2", and let
f* = fp~ be a fixed function in .. Suppose that

72 max Ey?(X;) <1, max |jll. <K. (14.14)

1<J<p 1<j<p

Let Ky := K¢K.
Let us furthermore recall that A (K, n, p) was defined in (14.6).

The distribution of X; is denoted by Q ,andweletQ=3Y7", ol / n. Moreover, we
let O, be the empirical distribution based on Xj,...,X,. Thus

l n
Onf ==Y F(X
ni3
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and

Of :=EQ,f.

14.9.1 The inner product of noise and linear functions

Lemma 14.21. Assume (14.13) and (14.14). For allt > 0,

ner BB
< exp[—nt],
where
o (1) : K0t+6}t( ,p>+6\r
Proof. It holds that

1 & |
~ Y Bl (X)|" < T kp 267,
n= 2

Hence by Lemma 14.13, for all > 0,

max
1<j<p

The result now follows from Holder’s inequality:

Z &y;j(X

>tK0+G7L(I; >+of><exp[ nt).

n;

<[IB =By max

1 n
Zeill/j(xl)
i=1

1

|1z (fs— ) (X)

14.9.2 Squared linear functions

Lemma 14.22. Assume (14.14). Let Fy := {fg = Z‘;:l Bivi: IB—B*|1 <M}
be a class of linear functions on 2, and let f° be a fixed function, with possibly
0 ¢ Fu. Suppose that for some 1 > 0,

1f =<0,V fETu.
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Define
1
Zy = sup |5(0n— Q) ((F =2 = (f = 1)) |-

Then fort > 0,
P(Zy > Max(t)) < exp|—nt],

where

ax(1)/(2n) == 2K 4 4+ V2T 8K,

K
AX =2 <3,n,p) .
Proof. Consider the mapping

Yr(x) = (f = f°)*(x)/2n, f € .

with

Then

=P+ 7=

I e AT

7= Y7l < (

Thus, by Symmetrization Theorem 14.3 and the Contraction Theorem 14.4,

%i Xi))D

< 8nM < 21°gn(2p) + Kloff”) — 8 My,

EZy <4nE ( sup

feIu

EZ v;(Xi)

< 8NME | max
iz

1<j<p

where in the last step we invoked Corollary 14.1.

Next, we use Bousquet’s inequality. We first note that for all f € Fy,

1 & 1 &
;ZE(VJ"*W*)Q(X) ;Z (f = f)(X) <M,
i=1 i=1
and
e =yl < |f = f7| < MK.
So fort > 0,

4ntMK

P (ZM > BZy + V2t \/412M? + 4nMKEZy + ) < exp|—nt].
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Now, insert EZy; < 8nMAyx. O

The above theorem can be improved in certain settings. Note that it makes use of the
contraction inequality, which in turn is why we need the assumption that the class
of functions is uniformly bounded (by 7). We may use that when

—B*|h < illoo <
BBl <M. max [l < K.

then
Ifp — fp+lle < MK.

In the case of the Lasso with random design, one applies this with K = O(1s./¢2),
so that the above approach leads to restrictions on the magnitude of s, (modulo K,
N and ¢, and with A < y/log p/n, the sparsity s, should generally be of small order

v/n/logp).

We will quote a result of Guédon et al. (2007), which can be used to relax the
conditions on the rate of growth of the sparsity. In Section 14.12, we define the
o-entropy H(-,A,d) of a subset of a metric space (A,d). The entropy integral is

then
Diam(A)
D(A,d) = / VHA, d)du,
0

whenever the integral is finite (and using a continuous majorant of the entropy if
necessary). The entropy integral plays an important role in empirical process theory.
We refer to Lemma 14.18 for an example. In the latter lemma, we use an entropy
sum instead of an integral, but it is a common custom to replace the sum by the
perhaps more elegant integral.

A collection .Z of real-valued functions on 2~ can be equipped with the metric
induced by the norm

171

o i= max |f(X;)].

1<i<n

We then define
Up(F) :=ED*(Z, || lloon)-

Theorem 14.6. (Guédon et al., 2007). Let

R:= sup ||f],
fe7
where || - || denotes the Ly(Q)-norm. Then for a universal constant c,
E sup |(Q, — Q) f*| < cmax{RUn(ﬂ’)/\/ﬁ7 U,f(f)/n}
feF

The above result is invoked in Bartlett et al. (2009) to answer a question posed in
Greenshtein and Ritov (2004): see also the discussion in Section 2.4.
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14.9.3 Squared error loss

LetY; = fO(X;) +&,i=1,...,n. Define
YY) =(—f)* xe 2, yeR.

Lemma 14.23. Let 7y = {fp = L[, Bjy;: |[B—B*Ili <M} be a class of linear
functions on 2", and let f° be a fixed function, with possibly f° ¢ Fy. Suppose that

1f=Flle <7,V f € Fu.

Then fort > 0,
P ( sup [(By —P)(yp, — vpe)| = M(ae (1) + OCX(O)) < 2exp[—ni],
JpEFm

where
0 (1) := Kot + e + oV,

K
Ae .= OA <60,n,p) ,

2K
ax (1)/(21) = tT 40y + V2014 8Ky,

K
Ax = A <3,n,p).

Proof. This follows from combining the previous two subsections. ad

with

and where

with

14.10 Assuming only lower order moments

We show that by symmetrization, one can prove moment and probability inequali-
ties using only second moments. We restrict ourselves to a finite class of functions
{7,..., 7} (infinite classes can often be treated using e.g. entropy calculations, see
Section 14.11 for an illustration).
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14.10.1 Nemirovski moment inequality

We prove an inequality for the m-th moment of maxima of sums of independent
random variables. The case m = 2 is considered in Diimbgen et al. (2010). It is -
modulo constants - Nemirovski’s inequality (the latter actually concerns the second
moment of {,-norms (1 < g < o) of sums of independent random variables in R,
whereas we only consider the case g = o).

Lemma 14.24. (Nemirovski moment inequality) For m > 1 and p > ¢"~!, we
have

m

< [810g(2p)]m/2 [max iy} ]m/z.

l<j<pl]

E max f{(yj(Zi) —EYj(Zi)>

I<j<p|;

Proof. Let (&,...,&,) be a Rademacher sequence independent of z :=
(Z1,...,Z,). Let E, denote conditional expectation given z. By Hoeffding’s moment
inequality (Lemma 14.14), conditionally on z,

n m m/2 n m/2
B, max ;(w(z») < [2106(20)] / max [Z 72| .
Hence,
m m/2 n m/2
B max |} Zem < [2log(2p>] E lrgggp;ﬁ@i)]

Finally, we desymmetrize (see Theorem 14.3):

m\ 1/m m\ 1/m

> <2 (IE max > .
l<]<p

Example 14.3. Consider independent centered random variables gi,...,€&,, with
variance Ee? < o for all i. Moreover, let {xij:i=1,...,n, j=1,...,p} be given
constants. Define fori = 1,...,n,

Z&%

O

K; = 1r£1a<x |xij]-

Then clearly
n n
E eixt | <o’ Y k7.
oo Lot | <o L

Lemma 14.24 shows therefore that for p > e,
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o [smg(zmH K}

E max
1<j<p

Ze,x,]/n

n

14.10.2 A uniform inequality for quadratic forms

The next result can be used for example in the context of multivariate regression
with group Lasso, as considered in Section 8.6.

Lemma 14.25. Let {€;,: i=1,...,n, t = 1,...,T} be independent random vari-
ables with Eg;; = 0, Esl%t =1, and E£4 < ,LLi for all i and t. Moreover. let {xijl :

i=1,...,n, j=1,...,p, t =1,...,T} be given constants satisfying Y.} lx =n

i,j,t
or all jand t. Then for P > 63, we have
f J

T 1 n 2 2
1252 ;{(ﬁ;{xw m)

3/2
< {T - ﬁ{Slog(Ep)} i

o
s
SIES

(ag

1=
=]

=

=

[
5
——
N

Proof. Define for all j and 7,

1 ¢ 2
Viei= ( xi,j,tgi,t) s
vn ;

andletV;:=(Viy,...,V, ), t=1,...T. ThenVi,...,Vr are independent, and EV; , =
1 for all # and j. Hence, by the Nemirovski moment inequality given in the previous
section (Lemma 14.24), for p > e

T 2

Z Vii—1)

E max
l<j<p

T
< 8log(2p) ZE{maX v? ]

-1 1<j<p

Also, applying again the Nemirovski moment inequality, we obtain for p > 3, and
for all ¢,

1 n
E max V =K max | — E Xijt€ir
1<j<p ! 1<j<p \/ﬁizl '

n 2
max x;
Zl(l<]<p Lt ll)]

[8 log(2p ]
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14.11 Using entropy for concentration in the sub-Gaussian case

Consider independent centered random variables &y, ..., &,, that are sub-Gaussian:
for some constants K and o,

K*(Eexp[e?/K*]—1)< o3, i=1,...,n. (14.15)

Later, we will use the short-hand notation

Ko/3:=2°\/K2+ 3.

Let {xi,...,x,} C &£ be fixed. Write

and let % C Ly(Q,). Denote the L, (Q,)-norm by || - ||,,. Throughout this section, we
assume that

sup [ fll < 1. (14.16)
feF

We consider the process

{(&,f)n: feT},
where (€, f)n == i, &f (xi) /n.
We note that & f(x;) is a sub-Gaussian random variable: fori = 1,...,n,

K? (Eexple? f*(xi)/K7] — 1) < 05,

where K? = K2 f*(x;) and 63, = 0§ f2(x;).
In order to be able to use the result of Section 14.5.3, which is for finite classes of

functions, we approximate .% by a finite sub-class.

Definition For & > 0, the §-covering number N (8, %, || - |l,) of (Z,|| - |l.) is the
minimum number of balls with radius § necessary to cover the class % . The entropy
is H(-, 7, || [ln) :=10gN (-, 7, || - [|n)-
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We will again apply the chaining argument. We combine chaining with Lemma
14.17. In Lemma 14.17, we choose S = o, which is allowed if the infinite sum

22 *V1og(1+2N27, 7, - [ln),

converges, which we will assume implicitly. This implicit assumption can actually
be avoided using the Cauchy-Schwarz inequality

(&, )al < [I€llnllA

where (with some abuse of notation)

lellz - 28

One can show that the chaining argument only needs a finite number § of links,
with2 SR =<1 /+/n. To avoid digressions, we do not treat this in detail here, see also
Lemma 14.18.

Theorem 14.7. Assume (14.15) and (14.16). Let, for each s € {0,1,...}, F :=
{fs}J | C F be aminimal 2~°-covering set of (F,|| - ||n). Define

ao:= Y 277"\/log(1+2N;) Vs
s=1

and
Z:=su |(8 Fnl-
fe.
It holds that
Eexp [(vaZ/Ko—ao)+]” < 14 2exp[—2a]). (14.17)

Theorem 14.7 is of the same spirit as the results in Viens and Vizcarra (2007). The
latter paper is however more general, as it considers more general tail behavior.
Moreover, it replaces the bound ag in the left-hand side of (14.17) by EZ. In appli-
cations, one then needs to derive a bound for [EZ by separate means.

Proof of Theorem 14.7. For all f € .% and all s, there is a g° ¥ € F5 such that
|f —&}lln < 27°. Hence we have for all s € {1,2,...},

Zegf g5 Dt (& f—&hns
where we take g fEO. Define

Xs = Iflé%(\/ﬁ“eag? _g;71)11‘~
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Note that
gy — &5 ln < llgf = Flln+11f =& lln <3x27°

Moreover card({gj} — gjf] ) < NyNy_1 < N?. Lemma 14.16 therefore tells us that,
for & :=124/K? + 632’3,
Eexp[X2/82] < 1+2N2.

Combine this with Lemma 14.17, and the bounds log(1 +2N?) < 2log(1 + 2Nj),
and

N
Y 27vs <2,
s=1
to obtain

2
s
Eexp (ZXY/Koa0)+] < 1+ 2exp[—24]).

s=1

Let for all R > 0,
F(R):={feZ: |[fll. <R}

The following corollary shows how the empirical process behaves as a function of
the radius R.

Define

=

ao(R) := Y 27 'R\/log(1 +2N (2R, Z (R), || - ) V s,

s=1

and

Z(R):= sup (&, f)nl.
feZ(R)

Corollary 14.5. Assume (14.15). For all R, it holds that

2
ey (\/ﬁl(R)/Ijé)ao(R))ﬂ g1+2exp[_2"§§’”}

We will now turn to the weighted empirical process.

Lemma 14.26. Assume (14.15) and (14.16). Suppose that a(R) > ao(R) is such that
a(R) in non-decreasing in R and a(R)/R is non-increasing in R (0 < R < 1), and
that

B:= i exp[—a*(27%)/27%] < oo.
s=1

Then
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(V7| (&, f)nl /Ko — 2a(llflln))ﬂ ?

<1+2B
2[1 £l

feF

Eexp lsup [

Proof. We can assume || f]|, > 0 for all f € .%. Lets € {0,1,...}. Because a(R)/R
is non-increasing in R, it holds that

—s—1
a2y =E )y AT

-5 __ —s—1
P <= 275 =2a(275").

Hence

sup {(\/ﬁ(&f)nl/Ko—%(flln))+]

feF, 2-s-1<||flla<2- 2|1 £l

(Vnl(&, f)nl /Ko —20(2‘*1))+]

< sup [ 7

feZ, |fln<27

(v, f)al /Ko — a(2s))+}
2—s :

< sup [
JeF, flla<27

We now use the so-called peeling device (see van de Geer (2000), and the references
therein). In view of Corollary 14.5 we then get

{(ﬁ(e,mm—za(f||n>>+ﬂ .

Eexp | sup

fez

¥ {Eexp l wp [(\/ﬁl(&f)nl/lfo—2a(||f||n))+ﬂ B 1}
J

2[171lx

s=0 eF, 2 < flla<27 2[| £l
y Ko—2a(27%)),]°
< Z Eexp sup |:(\/ﬁ|(£af)n|/ _(i a( ))+:| 1
5=0 feﬂgv HanSsz 2

o 2 2 2—s
< ZZexp {az(zs)} =2B.
s=0

O

Corollary 14.6. Assume (14.15). Let .F be a class of functions with ||f||, < 1 for
all f € F, and with, for some 0 < v < 1 and some constant A,

A 2v
g1+ 280,71 1)) < () L 0<d<

Then

1 - 1
ao(R) < EA\‘ﬁRl"’ Y 2 = §A5RH(2H —-1)"":=a(R).
s=1
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Moreover 2
2™
Z €Xp |: 2—2s :|

2\/22vs

o] ] < B 5]

A2y -
= (o0t 1) =

Lemma 14.26 for this case gives

Eoxp [Sup [ ((\/ﬁ(e,f)nI Axnfn,:V)ﬂ

feF Il f11nKo 217V —1

<1+2By.
Chebyshev’s inequality shows that for all t > 0,

P(a FeF: alle )l = KAl @Y 1) +K0||f||nf>
<exp[—*/K3](1+2By).

Corollary 14.7. The result of the present corollary can be used in Subsection 6.11.1,
which concerns the estimator with {,-penalty, 0 < r < 1. Assume (14.15). Let, for a
given 0 < r < 1, and a given dictionary {l;/j} _with [yl < 1,

T ={fg=YLBw;: IBll-<1}.
Then from Lemma 14.32, for

and for 2p~ (149 |\ /ot < § < 2(\/&)5 we have

log(1+2N(8,.7. ||+ ) < 4(1 + &) (8% /4) "7 log(1 +2p)

2r
2=r 2=r

¢ log ta (1+2p)
0

Values of & outside the above range can be handled easily. So, in the notation of
Corollary 14.6, the constants are v =r/(2 —r), and A, = c,+/log(1 +2p). Define

cylog(1+2p) 5= -
br,p = (exp |:2(1r)2:| — 1) 5
20277 —1)2
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and let

ﬁzz{VfEﬁ:\/ﬁ(e,f)n| \/Wcr 201 }

A"+ Koll £llnt

277 —1
Then from Corollary 14.6,

P(7) > 1 —exp[—1*/K3|(142b,).
Note that by, — 0 as p — co. The probability of 7 is large for large t.

Corollary 14.8. Assume (14.15). Fix an m € N. Let
Fi={f:0,1] = R: | fla <1, TV ) <1},

where TV (g) = [|g| is the total variation of the function g. We refer to Sec-
tion 14.12.6 for more details. The following result can be invoked in Subsection
8.4.2, where the high-dimensional additive model is studied. There, for a function
f:10,1] = R, the squared Sobolev semi-norm [ | (x)[>dx is used as a measure
of smoothness. It is clear that

{riistr, firmeparsi} e s

Theorem 14.10 shows that for some constant ¢,

log(1+2N(8, 7, |- ) <4 ()" 8 >0,

i.e., in the notation of Corollary 14.6, the constants are v =1/(2m) and A, = 2 Co.
In the same way as in the previous corollary, one may conclude that

f\(e f) |
e Al

= 0p(1).

14.12 Some entropy results

We derive entropies for classes of functions relevant for our work. These can be used
in the maximal inequalities given in Section 14.6.3 to arrive at concrete bounds for
special cases. Our main focus will be on linear classes of functions, with an ¢;-bound
on the coefficients.

In Subsection 14.12.1, we give an entropy bound for a ball in finite-dimensional
space endowed with £,-norm (1 < g < o). We also present there the entropy of
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the convex hull of a given set {y;} C Ly(Q) of functions. Subsection 14.12.2 re-
fines this to the case where the coefficients are restricted to lie in some smaller set,
such as an /,-ball with 0 < r < 1. Subsections 14.12.3 and 14.12.4 study the case
where the functions {y;} are (highly) correlated, and in fact can be approximated
by a smaller §-covering. Subsection 14.12.3 gives a relatively simple bound for the
entropy involving a logarithmic term, whereas Subsection 14.12.4 shows that the
logarithmic term can be removed in certain cases, but that one then possibly pays
a price in the constants. Subsection 14.12.5 provides some important refinements.
Subsection 14.12.6 considers an example and Subsection 14.12.7 has the proofs for
this section.

The definition of entropy, and related concepts, is as follows.
Let (A,d) be a subset of a metric space.

Definition For 6 > 0, the §-capacity € (8,A,d) of A is the maximal number of
elements of a §-packing set, that is, of a subset Ag of A having each pair of distinct
elements Aj and A at least & apart (i.e., d(Aj, ) > ).

The &-covering number N(8,A,d) of A is the smallest number of closed balls with
radius 8, that covers the space A. We call the centers of the balls a 5-covering set.
The entropy of A is H(-,A,d) :=1ogN(-,A,d).

It is sometimes useful to require that the covering sets are within A. This can be
always be accomplished: from a general §-covering set we can construct a 26-
covering set within A. Note moreover that a maximal J-packing set is also a J-
covering set and that 28-packing set is never larger than a §-covering set.

We generally consider sets A for which there indeed exist finite coverings (such sets
are called totally bounded).

In what follows, Q is a probability measure on the space 2, || - || is the L,(Q)-norm,
and {l//j}jp.zl C Ly(Q) are given functions with norm || y;|| <1, for all j. For B € R?,
we write

)4
fg= Z}ﬁj‘lfr
=

Entropy results for the class
{fp: Bl =1}
can be deduced from those for the convex hull

conv({y;}) :={fg: B; =0,[IBl=1}

by separating the positive and negative coefficients:

=Y Biwi+ ) B,

B;>0 B;j<0

Moreover, the class
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{fp: 1Bl <1}

(i.e., the coefficients are in the ¢;-ball, including the interior) can be handled by
adding the additional function ¥y = 0 to the set {l/l/}

We use the notation: for x > 0

[x] is the smallest integer larger than or equal to x

|x]is the largest integer (including 0) smaller than or equal to x.

14.12.1 Entropy of finite-dimensional spaces and general convex
hulls

Lemma 14.27. Endow R? with the metric corresponding to the {,-norm, where 1 <
q < oo. Consider the {y-ball
={0 eR": [|0], <R}

Then

2R+6
13}

)4
%(6,@,|-|q>s( ),0<5§R.

We next consider a lemma from Pollard (1990): Theorem 6.2, and van der Vaart and
Wellner (1996): Lemma 2.6.11.

Lemma 14.28. For all § > 0, we have

1 (8.comv w111

LH <1 +1log (1 +p52))) LH log p.

14.12.2 Sets with restrictions on the coefficients
Lemma 14.29. Let 28 C RP. Then for all § > 0,
H(5.0ps el ) <mp{Hz 1)+ [ | e +20) ).

As a special case, we consider coefficients that are required to lie within an ¢,-ball,
O<r<l.
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Lemma 14.30. For a given 0 < r < 1, let B be the set B :={B € R?: ||B|F < 1}.
Then for all u > 0,

2\ 4+
a2 0 < (3) " (oo (F21)).

We now give a bound for the entropy which approximately does the minimization
as given in Lemma 14.29. To facilitate these derivations, we present (without proof)
the following straightforward result.

Lemma 14.31. Define for x > 0, and for positive constants ¢ and Q. the function
fx) :=x"%+x/c.

Then
min f(x) = (¢ +1)(ac) e,

x>0

and 1

argmin f(x) = (o) THa .
x>0
The combination of Lemma 14.29 and Lemma 14.30 results in the following bound.

Lemma 14.32. For a given 0 < r < 1, let 2 be the set B :={B € R’ : ||B|} < 1}.
Define

Then, for 2p_(1+°‘)/\/& <5< Z(ﬁ)é we have

H(5,{fﬁ . BeB)|- ||> <4(1+a)(ad?/4) 27 log(1 +2p).

14.12.3 Convex hulls of small sets: entropy with log-term

We consider sets of functions {y;} with relatively small covering number
N(-,{w;},| - 1), and examine the entropy for the convex hull conv({y;}) of {y;}.
Dudley (1987) gives a bound for this entropy for the case where the u-covering
number of {y;} is a polynomial in 1/u. Its derivation, as given in Pollard (1990)
is less complicated than the one of the next subsection, but the result may involve
a redundant logarithmic term. We reprove the result of Pollard (1990) here, using
the same technique of proof, and extending it to general covering numbers (i.e., not
only polynomial ones).

The next lemma is the core of the result, as in Pollard (1990): Theorem 6.2.
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Lemma 14.33. Consider functions g, = (a, ;- --8ay)", of the form

8 =Y 0k0jk,
J

where ay = {a; i}, with aj > 0 for all jand k, and Y. ; & = 1 for all k. Moreover,
the §; i are given functions with ||@; || < u for all j and k. The total number as j
and k vary is denoted by p := card({9; «}). Fix a 6 € RN satisfying 6, > 0 for all k,
and ):Q/:l Or=1.Let Gy :={g = Zivzl 08, }- Then

u2
H(3 90, 1) < (53 +N) toep.

As a consequence of Lemma 14.33, we get a bound for the entropy, again (as in

Lemma 14.29) by trading off the u-covering number against the squared radius u?.

Lemma 14.34. Define N(u) := N(u,{y;},|| - ||), u > 0. We have

(38 con(tys 1)
< rgg{ <3N(u) + 4;22) log <(8+66) N(5)> } :

14.12.4 Convex hulls of small sets: entropy without log-term

This subsection considers the same problem as the previous one. We now do our
calculations in such a way to possibly remove the logarithmic term in certain cases.
This allows one to recover known results from approximation theory for a large class
of function spaces. An example will be the space of (m — 1)-times differentiable
functions, with the (m — 1)-th derivative being of bounded variation, see Subsection
14.12.6.

The results of this section are inspired by Ball and Pajor (1990) and van der Vaart
and Wellner (1996). For the proofs, the first ingredient is along the lines of Lemma
2.6.11 in van der Vaart and Wellner (1996).

In what follows, we consider a non-increasing sequence of positive numbers {u,}5 ),

and let {y}} be us-covering sets of {y;}, with cardinality N := [{y}}|. Then for

each j, we can consider the closest neighbour of y; in the ug-covering set, say ;.
J

It is clear that then, for fixed s > 1, the number of functions {y}; — WZ; 11} as j
. ]

varies is at most NgN;_1. We now show that this number can brought down to N, by
agreeing upon a tree structure for the sequence of covering sets.
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Definition Ler {u,} ) be a non-increasing sequence of positive numbers, {y;} be
ug-covering sets of {y;}, with cardinality Ny := [{y}}|. For any s > 1, and any
ke {1,...,Ns_1}, we define the off-spring V! of k at generation s as the indices of
the set of functions in {y;} which are closest to v e

vem{as vy v l= i

Jmin - wi
The generation tree is the collection of mappings

g {lL... N}t —={l,....Ns_1}, s=1,2,...,
of off-spring to parent, defined as

() =kif je V.

Lemma 14.35. (Generation Tree Lemma) Let {u}; ) be a non-increasing sequence
of positive numbers, with up = 1, and let {y}} C {y;} be us-covering sets of {y;},
with cardinality Ny := |{y}}|. Take y = 0. Then

||V’If_‘l’§:7(,i)|| <ug_1,s=1,2,....

Moreover, for each generation T, ; can be decomposed as

V=

M-

(w;i;—wkjsl)Jr(wj—w,f]r),

where {kj}sT:_l1 Jollows the branches of the tree (i.e. kj._l =g'(k}), s=1,....T—1),
and where
Iy =yl < ur-

The Generation Tree Lemma plays an important role in the proof of the next lemma.

Lemma 14.36. Define (for s € {0,1,...}) 6, =27, and let {y/;}’]";l C{y;} be a
ug-covering set of {y;}, where uy is non-increasing in s and where
2u? /82 < N, < 4u?/82.
Define for all s,
Fs = conv({y;}).
Then g
H(8s, 7y, |- ) < 10g<9 [2€]9> Y Nt
=1
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Our second ingredient uses a so-called “chaining” argument to derive entropies.

Lemma 14.37. Define (for s € {0,1,...}) 6 =27°, and let {l[/;f}ljy;'l C{y;} be a
ug-covering set of {y;}, where uy is non-increasing in s and where

2u? /82 < Ny < 4u? /82

Fix an s and let, for all j, ¢j’ = V’/if,’ t=1,...,T, where k’j is chosen as in Lemma
J

14.35 and T is the smallest integer s.uch that ur < &. Let moreover 1; >0, Zthl N <
1. Then

H(26,,conv({y;— 62}, |I-1I) < i <s+z1+1> (1+10g (1422041 ).

The next theorem follows directly from combining Lemma 14.36 and Lemma 14.37.

Theorem 14.8. Define (for s € {0,1,...}) 6, =27*, and let {l//]} c{yj} bea
us-covering set of {y;}, where

2267 < N, < 4232

Letn; >0, ZIT:1 N: = 1, where T is the smallest integer such that uy < 8. Then

HE38comv( [y, ) < tog (9126 ZIN

+j2; (22t+:gs+t_1+ 1) <1 +log <1 +22(t+l))) _

The next theorem considers an important special case.

Theorem 14.9. Suppose that for some positive constants A and W with AV > 2,

A w
NI < (5) o
Then for all s € {0,1,2,...} and for 6, =275,
oW -2V
H(8;,conv({y;}), || [|) < CwAZW & =,

where

3(2+W)>422+2W.

4~ =210 (912" ) (228 —277w) 1 4 21050
2log2
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14.12.5 Further refinements

It is clear that entropy bounds for conv{y/;} based only on the covering number of
{y;} can be sup-optimal. For example, suppose that

Vi=VYir+ Vo,

with the v x and Y, ; varying in certain collections {y x} and {5} respectively.

Clearly,

N Awid - 1D < NGk - DN s Sy b 11D,
and in many cases, this bound cannot be substantially improved. It means e.g.
that if N (u, {y;, ) = u" as well as N(u,{ya,},|| - ||) < u~", then typically
N(u, {y;},|-1]) < u?".Nevertheless, H(8,conv({y;}), |- ||) < 57w , which can

be easily seen by applying Theorem 14.9 to the two sets {y;x} and {5} sepa-
rately.

The following lemma presents a further refinement.

Lemma 14.38. Define (for s € {0,1,...}) 8, = 2. Suppose that for all s, there is a
set {l[/j} Y1 C{w i} such that each y; is assigned to a ¢; := , and such that

H(&;,conv({y; —¢;j}),[|-]]) < H.
Assume that Hy=0and 1 =Ny < N, < .... Then

N

(53,COHV({VIS} -1 < Z(H, 1 +log(( 1+23)(1+24)) >

t=1

14.12.6 An example: functions with (m — 1)-th derivative of
bounded variation

The total variation of a function f : R — R is defined as

TV(f) = sup sup Zlf zj) = f(zj-1)l-

N>1 zp<zp<---<zy— ]<ZNI

The function f is called of bounded variation if TV(f) < o. One easily checks that
TV(f) <M if and only if f can be written as f = ¢+ f} — f_, where c is a constant,
and f and f_ are non-decreasing, with values in [—M, M|. We will use the notation
1 for “non-decreasing”.
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We consider the entropy of a collection of functions whose (m — 1)-th derivative is
of bounded variation. As noted above, this problem can be reduced to considering a
collection of functions with (m — 1)-th derivative monotone and bounded.

Let

Fm .= {f: [0,1] 5 R: f®0)=0,k=0,1,...m—1, fm=V 1 0< = < 1}.

One easily verifies that
Fm = conv({yi™ : ve0,1]}),
where

x—y)n1
((’n)l)!l{xzv}.

We first consider the case m = 1. Then .Z () is the class of non-decreasing functions
(on [0, 1]) with values in [0, 1].

w" (x) =

Lemma 14.39. We have

N A" s vel0 )] < Tw?] <202 0<u<l.

It is easy to see that the above lemma and its corollary below remain true if .Z (1) is
the class of bounded non-decreasing functions on the whole real line.

Corollary 14.9. Application of Theorem 14.9 gives that for all s, and with §; = 27%,

H(&, 7, ) < V268,
Next, we consider general m. Here we need the refinements of Theorem 14.9.

Theorem 14.10. For all s, and for 8, =27,

H(8, F || ]) < cn™ 8™

9

where ",
o/m = vac T2
1=2

m—2 m
+2log((14+2°)(142%) Y 2w # /it —1) [] 2,
k=0 l=m—k+1

with C given in Theorem 14.9.
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14.12.7 Proofs for this section (Section 14.12)

Proof of Lemma 14.27. Let {6;}7", C @, with 4" := %(8,0, |- [|,), be all at least
0 apart. If [|0 — 6;]|, < /2 and |6; — 6k|l; > &, we must have (by the trlangle
inequality) || 6 — 9k||q > ||0; — k||, — ||6 — 6]l > 8/2. Hence, the balls B; := {6 :
|60 —06jll,<6/2}, j=1,...,/ are mutually disjoint. The (Lebesgue) size of an
£,4-ball with radius r is C,, 4”, where C,, , is some constant depending on p and g. It
follows that the size of U;B; is at least

N Cpq(8/2)P.

For all 6 € U;B;,
[6]lg <R+8/2.

The size of UB; is therefore at most
Cpq(R+03/2)P.

Thus we must have
N Cpq(6/2)P < Cpg(R+6/2).
O

Proof of Lemma 14.28. Let 8 € R” be given, and satisfy 8; > 0 and ):?Zl Bi=1.
Consider the random variable y# € L,(Q), with distribution

Then clearly
Let, for some m € N to be specified, 1//{3 eens l//,lz be i.i.d. copies of wP. Define their
average
1 m
1, B = — ﬁ
m ; Vi
Then

B9 — fylP = [ (9 — fp)dQ
—/E (WP — f5)?dQ = /var (WP — f5)d0 = — /var(wﬁ f3)dQ
1 B L 2 1
sm/ww)dQ—m/j)::lBJ%dQva

where in the last inequality, we invoked ||y;|| < 1 for all j. Hence, with m > 1/82,
there must be (by Chebyshev’s inequality) a realization # with || y# — fpll* < 82
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Now, we vary 3 over the simplex {8 : 3, >0, Zle B; = 1}. Then the WP vary over

the class Y, i, /m, where (ji,...,jm) € {1,...,p}". The number of such ¥# is

(at most)
—1 m
<p+m >§em(1+P) A
m m

where in the last inequality we applied Stirling’s formula. a

Proof of Lemma 14.29. Cover the set Z by ¢,-balls with radius u, say By,...,By,
where B; = { : || —Bjll1 <u},and N = N(u, .|| ).

The total covering number is at most
N
W(6.Us: BeBIN) < L NG sy s BB
j=1
The result follows by inserting the bound of Lemma 14.28:

H(8.0p sy BBl ) <[ et +20)

Proof of Lemma 14.30. Let u > 0 be arbitrary. Then

Y Bl <ulBll<u.

1
Bj|<uT-r
Moreover, defining N, :=#{j : |B;| > e }, we obtain
1> Y B =N,
gl
|Bj|>ut=r

or

r

N, <u T-.

Application of Lemma 14.27 with ¢ = 1, and noting that || 3||; < ||8

N(u,{ﬁ: 1BIS < M., 1Bl < 1},”.1) . (]5> (zﬂ)m.

u

- gives

Collecting the small coefficients |B;| < uﬁ as well, and taking logarithms, gives

p 2+u
(2 (181 <1001 ) <tog (2 )+ Matog (24
A u
r 2
<u T <logp+log (:Lt)) .
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Proof of Lemma 14.32. If u > 2/p, we have

4
ﬂ§1+2p.
u

Hence, by Lemma 14.30, for such u,

H(uw, 2| 1) < (2) ™ (logp+ log(1 4 2p))

u
2\ T
<2 () log(1+2p)
u

4\ ¢
:2<uz> log(1+2p).
In view of Lemma 14.29, we get for all u satisfying u > 2/p, u > 6,

2

H(s.0ms pemnl ) <2oe+20) | (5) + 5]

‘We now insert the value u2/4 = (a62/4)1%a_ 0
Proof of Lemma 14.33.

Consider the random vector ¢¢ := (¢“1,..., ¢ ), where ¢“1,...,9"¥ are indepen-
dent, and fork=1,...,N,

P(0%* = @) = ajg, j=1,... M.

Let {¢f}i>1 be ii.d. copies of ¢*.
Fork=1,...,N, define

and

Then we have

and hence

:/var(i ekqjak>dQ:/¥9kvar NdQ = /Zekvar ) /mdQ
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N N
< [ Y 6fE(o™ )2 /ma0 =Y. 6 [ E(¢)%aQ/m,
k=1 k=1

N N N
=Y Y il 9jull/m < Y 63 iy < 8% Y 6 = &

=1 k=1 k=1

Hence, there exists a realization ¢4 = (¢%1,... ¢V), such that

HZ"k £ —8q) H 8.

We now count the number of functions in this covering. We bound the number of
choices for ¢% by

1k

p

The number m;, can in turn be bounded by 61> / 52 + 1. The total number of choices
for ¢¢ is therefore at most

N
Hpeku2/82+1 _ pu2/52+N.

Taking logarithms, we find

H5. 0] < (5 + ) ogp.

a

Proof of Lemma 14.34. Fix some 6 > 0. Let {y1,...,Wy(s5)} C {y;} be a 26-
covering set of {y;}, assuming without loss of generality that the covering is formed

by the first N(6) functions in {y;}. We will construct a §-covering of {szv:(?) Biv;:

B >0, ||B]|1 = 1}. This is then a 38 covering of conv({y;}). Let {q)k}iv:(q) be a
u-covering set of {y/;}. For all k, define

Veim {7+ v ocll =minlvs o |

Let for B; > 0, Zjﬁj =1,

O = Z ﬁj-

JEVk

Let {6/} be a § /4-covering set of {{0: 6 >0, ZkN:(“l) Or =1}, - |l1}. Define

8ay = Z aj k(Wi — o), &= B;/6k.

J€Vk

Then
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Zﬁj‘lfz Zek(Pk +Y ) Bi(w

k jEVk

=Y 6o+ 6kga,
x %

=Y 00+ Y (6 — 6))ga, + Y 080,
k k k

By Lemma 14.27

840
(/4,02 0001 1-1) < Matog (252,
k
and -
+
(874,00 € B ol < 13,111 ) < Nawoe (5
and also, by Lemma 14.33, for all [,

MZ
15/2:9.11-1) < (5 + 8w ) 1ogN(0).

Collecting the terms gives

i (8.com( ()11 < (w+ B e ( (52 wia) ).

Proof of Lemma 14.35 . The first result follows from the definition of covering
number. For the second result, we define kJT by

O

1y = yjirll = _min vi— vi |-

Then again the result follows from the definition of covering number. ad

Proof of Lemma 14.36. Let us write for all s,

M Z:N(ssvysa ” : ”)

Fix somes > 1.Letfork=1,...,N,_1,

=

Vi=1: Il - —mlinllllf}—llfflll},

be the off-spring of l;lgfl
any f3 with §; >0, ); B; = 1, we have

ZB}'V’/ Zek +Z Z Bi(w, );

k jevy

k’IH < uy_;. For
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where 6, := Zjeka Bi,k=1,...,Ny_1.

Let {f! }?ifl be the centers of a §;_-covering of .%;_;. The ball

N1
{fe =Y 0y fe— <81, 0 € RNS‘}
i=1

746S_1 + 5S o = 9NA‘71
8

balls with radius &;/2 (see Lemma 14.27). Hence, we get

can be covered by

N(8,/2, Fs-1, |- [|) < Msy 9%t

Consider now the class of functions conv({y; — 1//2_1 D JEVE k=1,...,Ns_1}).
Since this is the convex hull of a class of functions, with cardinality N, because
of the tree structure (see the Generation Tree Lemma 14.35), each function having
Ly(Q)-norm ||y — l//;{‘*l || < us—1, we get from Lemma 14.28, and using uy—1 > u

and 6\' = 6\‘71/2,
552 4u?_ | /82+1
e l—l—NST
duy

< [23]16M%_1/63_1+1 < [26]81\&,1—}—1 < [Ze]‘)NS,l )

w(a/2com(ty - v L) <

Hence
My < Mg 91 [2¢]N1 |

or, taking logarithms,
logM; <logM,_ | +log (9 [26]9>N51.

But then X
o
logM; < log (9 [2e]9> Y Ni+logMj.

=0
The result follows, as My = 1. O
Proof of Lemma 14.37. Let 3; > 0, }; B; = 1. Then

HZﬁ Sl <maXII‘I/J O/ Sur <6

We can write
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T—s

t=1

where we follow the branches of the generation tree. Define

H,, :=H<ntay,conv<{¢;+f T ||).

Since by the Generation Tree Lemma 14.35, card({(]bjH - ¢j~+t7] }) < Ngts, and
since 937 — 37| <ugy, 1, by Lemma 14.28,

M2
H; < ( g;;'_zl +1 (1 +log (1 +NS+t6s2nt2/”§+t—1)) :
5 T

Now
u; 1 2(—1 u; 1 241
stt—1 __ »—-2(t— s+t— —2t+
772 ( )627§2 Nyie-1,
s s+t—1
and 2 2 2 ~H2
1t
NS+t6s < Ns+t6s _ NS+t6s+t2 < 22(t+1)
u? T N u? B '
s+1—1 s+t s+t

Thus, inserting i, < 1,
227 Nsys 21+1)
H < (3041 ) (1410g (14:2204D) ).
N;
Hence,

T—s
H(8;,conv({9] —¢3}),1|-1)) < Y. His
=1

T—s —2t+1

2N,

<y (92‘“1+1> (1-+10g (14220},
=1 N

Proof of Theorem 14.9. Define (for s € {0,1,...}),

ug = (A% 8,/V2) 7,

and -
N, = [Aza}

Then
N(us, {3 (- 1) <AV ug ™
2 2W
—2% _AFworws, TV <N,

&;
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We get

and

Hence,

Moreover,

Using

it follows that

14 Probability and moment inequalities

W W 2 u?
<2ATWOTW S, TV — 42

= S 52
s—1 s—1 W

W _ 2w

ZNH §2A22+7WW22+W 5 v,

=1 =1

| 2zw 2zw
5— 2W +W +W
Z S 2+W 63 1 63

t = =
t=1 224w — 1 224w — 1

=
=

22N, <24ty ug T
i s+1—1

W
2 oW TR A
=2HWATW2 2w §, HV

/N

1+ log (1 +22<’+‘>)) < tlog(5e),

¥ 2 (1pog (14270

4t
oW 2 23wy
Slog(Se)A;TWSS Y TI; 27w
=1 M

Take (fort=1,...)

(2~ W)/
nt = - 4
Y 2T Ew)l/3

and employ the bound

to find

Z“(Z‘%Wt)l/3 < 1—|—/w(2_2f+’Wt)1/3dt
0

t=1

<14 (w)4/3r(4/3) < (3(2+W))4/3,

4log2 2log?2
T—s 272IN _
Z ;ﬂ 1 (1+10g(1+22(t+1))>
=1 i

32+W)\* _ o
<log(5e) ((21(—);2)) AZ%TWWSS W
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Now, insert Theorem 14.8 to obtain

H (465, conv({y;}), || -[]) < H(38, conv({w;}), | -[])

<210g< 9) AW 22+w _Q*z%w)—las_zzTWW
3

O
Proof of Lemma 14.38. Let s > 1 be arbitrary. For each y/js- ,thereisa ¢;*1 € {l/f}"l}
assigned to it, such that

H(8-1,comv({y; —¢;7'}),[I-])) < Hyi.

So conv({y] — ¢;‘1}) is covered by exp[H,_;] balls with radius &_;. Since
card({y; — ¢j’1}) = N;, we can (by Lemma 14.27) cover each of these balls us-

ing at most 9" balls with radius /2. So in total, we can cover conv({l//j- - q);’l 1
by 9%sefs balls with radius &;/2. Define

M; := exp[H (&, conv({yi}), || - [])]-

Then, using similar arguments, we can cover conv({ufj‘f*l}) by (14 24N-1M, 4
balls with radius & /2.

Hence,
logM; < log(1+2%)Ny+ Hy_y +log(1 +2*)N,_ +logM,_,

= log((142%)(1+2%)Ny+H,_| +logM, ;.
Repeating the argument gives

N

logM; < log((1+2%)(1+2%) Z +2Ht1

O

Proof of Lemma 14.39. Without loss of generality, we may assume that Q is the
uniform distribution (Problem 14.8). Let 0 < u < 1 be arbitrary. Take v; = Jju?,
j=0,1,...,N, where N := [1/u?]. Then for v € (v;_1,v;],

- > v} =12 v P = (v —v))? <u.
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1
Proof of Theorem 14.10. Fix some § > 0. Take v; := j&,", j=0,1,...,N;, where

N = [1/831/"11. Define y; := wv(;”). For v € (vj_1,v}], assign ¢§’") to y/‘g_'],") =y

One then easily verifies that

(m) s
WV61;n¢v c y(mfl).

Further,
1
H(S, .conv({y, — ¢3}). || [) < H(8,/87,. 7"V || -|)).
Hence, for m = 2, and using Corollary 14.9

1
H(&,conv({w, — )} I|-1) < H(8,/82, 7M. -|I

< \szZ 6s1 /2 5; ! )

so that

s

Y (8 conv({ys— 3} |- ) < V26,82,

t=0

We moreover have, again for m = 2,
s—1
Y N <28 PV2/(V2-1).
=0

Application of Lemma 14.38 gives
(8,7, |- [) < V2IV2C +2l0g((1+2%)(1+2)v2/ (V2 - 1)]8; 2.
Invoking this, we see that for m = 3,
1
H(&,, conv({y, — o3} [|- ) < H(8,/87,. 7P, ||-])

< V2[V2C; +log((1+2°)(1+24)V2/ (V2 - 1)]8,/°8 "7,
so that

s—1
Y H(&,conv({y, — o)}, )
t=0

< V2[V2C +21og((1+23) (1 +2)V2/ (V2= DIV2/ (V2 —1)8, /3.
Form =3,
Ny <28, P23 ),

™=

t=1

Again, application of Lemma 14.38 gives
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H(8,, 7%, |-|)) <2'P[V2[v2e,
+2log((14+2%)(1+24)v2/(V2 - 1D)]V2/(V2 1)

+2log((1+23)(1+24)2'3 /(23 —1)]8, /3.
The proof is finished by repeating the argument (Problem 14.9). a

Problems

14.1. Suppose that for some constant ¢ and for all L,
Eexp[X /L] < explo?/(2L3)].

Show that X is sub-Gaussian.
14.2. Show that

K2
= (EeX/K - E|X|/K> < K? (Ee’(z/’(2 - 1) .

14.3. Consider independent random variables X1, ..., X,, where X; = (Xl.(l)7 ... ,Xi(p )).
Define X7 := (X7,...,XT), and
£ :=X"X/n,
and
Y :=FEX.

Let
12— Zoo := SP£|Zj,k —Zjkl
Js

Suppose that the Xi(j ) are, uniformly in / and j, sub-Gaussian: for some constants K
and 0'02,
K*(Eexp|| X /K*] 1) < 0.

foralli=1,...,n, j=1,...,p. Use similar arguments as in Example 14.1 to show
that for all 7,

P <|2 — Z||eo > 2Kt + 2K GoV/2t + 2K G A <K/co,n, (g))) < exp|—nt],

where
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;L<K/Go,n’ (g)) . \/W+ Klog(pép—l))'

14.4. This exercise is a variant of Problem 14.3. For simplicity, let us look at the case
of independent copies Xj,...,X, of a random variable X = (X1, ... X(")) ¢ RP.
Define

Mj= Ex), O'j2 ::IE|X(/) —[,Lj|2, j=1,...,p.
Let,for j=1,...,p,
n
Z|Xij_X(j>‘2’

where

Suppose that the X(/) are, uniformly in j, sub-Gaussian: for some constants K and
2
0y,
K*(Eexp[| XY ?/K* — 1) < o

forall j=1,..., p. Use similar arguments as in Example 14.1 to derive an exponen-

tial probability inequality for max;< <, \612 — sz|.

14.5. In this problem, we derive a symmetrization inequality for probabilities (see
Pollard (1984), van de Geer (2000)). Let P, be the empirical distribution of 7 in-
dependent random variables Z;,...,Z,, defined on a space %, and let P, be an in-
dependent copy of P, (i.e. P, is the empirical distribution of an independent copy
(Zy,...,Z}) of (Z1,...,Zy,)). Let furthermore {yj}le be a collection of real-valued
functions on %, that satisfy

Eyj(Z)) =0, Vi, j.

Define for any function y: 2 — R,

I = L Y ER 2,

whenever it exists.
(a) Suppose that for some R,
max |7 < R

Show that for any # > 0 and any 0 < 17 < 1, and for n > R?/(n*§2),

P(max; | (P, — )yl > (1—n)t)
1—R%/(nm*?) '

P(max |P.yj| > 1) <
J

(b) Let g1,..., &, be a Rademacher sequence, independent of Z,,...,Z,.Z;,....Z).
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>t/2)

14.6. This exercise considers a similar situation as in Lemma 14.25, but now for
the case where the sums Y} |x; ;& share the same ¢ for different 7. The ran-
dom variables {g : i =1,...,n} are assumed to be independent with Eg; = 0, and
Elg|™ < )y forall i. Moreover. {x; j,: i=1,...,n, j=1,...,p,t=1,...,Tj}isa
given collection of constants. Let

Show that for all t > 0,

- Zst’)/j

P(max|(P — Pyl >t> <2P(max
J

¥

"B\"
.

Then for pT > e*" !,

T; 21"
1 /1 &
2 |1 E(Ga B |
m 1 n
< {810g(2p)} JT5A {Z max max.xiz,'l'»"t}
= St

14.7. Consider independent real-valued random variables {Y;}! , and fixed x; € 2,
i=1,...,n.For f: Z — R, define

1 n
e WAtOR
i=1
Let y1,...,y, be given functions on 2", and define
P
fg=Y Biwj, BER".
j=1

Let p : R — R be a given loss function. Assume that p is a Lipschitz function, with
Lipschitz constant L:

Ip(s) —p(8) < L|s—3 V5,5 €R.
Let B* be fixed. Define

i;( (Y — fp(x1)) — EP(Yifﬁ(xi)))-

For all 6 > 0, we define the random variable
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Zs:= sup  |vu(B) = vu(B)I/v/P-

[l fp—fpln<8
Apply Lemma 14.19 and Massart’s concentration inequality (Theorem 14.2) to find
a probability inequality for the set .7 = {Zg < SL(4/\/n+1t/\/np)}.

14.8. Let O be a probability measure on R which has a strictly increasing continuous
distribution function and let

F={f: R—=1[0,1], f1}.

(a) Check that the entropy of .% for the L,(Q) norm does not depend on Q (1 < ¢ <
o).

(b) Verify that the entropy is not finite for the L.-norm.

(c)Verify that these entropies for possibly non-strictly increasing or non-continuous
Q are not larger than for the strictly increasing continuous case.

14.9. This is applied in the proof of Theorem 14.10. Consider the recursion
Xm = bmXm—1+cm,m=1,...,
where the b, and ¢, are given constants. Verify that

m—2 m

m
Xm :leb1+ Zcm_k H by.
=2 k=1

I=m—k+1
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